ASSESSING THE ROLE OF TURBID RIVER PLUMES IN THE DEVELOPMENT OF MICROCYSTIS BLOOMS IN LAKE ERIE WITH MOLECULAR TECHNIQUES

A Final Report to the Lake Erie Protection Fund (Project LEPF 00-08)

Investigators
Thomas B. Bridgeman (lead PI), Christine M. Mayer Scott A. Heckathorn, and W. Von Sigler
Department of Environmental Sciences and
Lake Erie Center, University of Toledo, Oregon, Ohio

February, 2010

Abstract
Lake monitoring activities based at the University of Toledo Lake Erie Center since 2002 have identified blooms of the cyanobacterium Microcystis aeruginosa as a recurring, persistent ecological problem in Maumee Bay and western Lake Erie. Based on observations of water quality conditions leading up to blooms, we hypothesized that low-light and high-nutrient conditions in the Maumee River plume may potentially explain why outer Maumee Bay, the epicenter of most blooms, is especially prone to bloom formation. We tested our hypotheses using a combination of field measurements and laboratory experiments, measuring photosynthetic efficiency, photo-damage, proteins, pigments, and nutrient ratios to determine the physiological state of Lake Erie phytoplankton under a variety of natural and controlled conditions. Our findings supported our hypotheses, showing that turbidity interacts with vertical mixing of the water column to create a light climate that is advantageous to species, such as Microcystis, that can regulate their buoyancy. High turbidity protected Microcystis from damage to photosynthetic apparatus due to intense sunlight while also causing low-light limitation in non-buoyant phytoplankton species. Total N:P ratios indicated that phosphorus was most often the limiting nutrient. Future reductions in turbidity (suspended sediment) would alter the light climate and may reduce the advantage Microcystis currently enjoys. Reductions in phosphorus loading would likely reduce the overall biomass of algal blooms.

This project was funded jointly by the Lake Erie Protection Fund and Ohio Sea Grant.

Ohio Lake Erie Commission
Sea Grant
Technical Report

Project Activities and Timeline

In addition to the primary objectives, LEPF funding for this project also helped to provide vessel time, supplies and support for graduate and undergraduate students to complete ancillary projects related to harmful algal blooms in western Lake Erie, such as surveys of the newly invasive *Lyngbya wollei* and improved HAB monitoring techniques.

2007: First field season (June-October). Measurements of Lake Erie Water Quality, Microcystis bloom formation, photosynthesis measurements.
2008: Second field season (June-October). Measurements of Lake Erie Water Quality, Microcystis bloom formation, photosynthesis measurements, laboratory experiments.
2009: Completion of sample analyses, data analyses, compilation of results, manuscript preparation. Third field season (Lake Erie water quality and *Microcystis* bloom measurements).

Products

Presentations:

2008 *International Association of Great Lakes Research, Annual Conference* (Chaffin, J.D.** Bridgeman, T.B., and J.E. Filbrun*) Quantification of *Microcystis* sp. blooms in Western Lake Erie (2002-2007) and Relation to Tributary Flow.

2009 *Western Lake Erie Basin Conference, “Maumee Bay/Lake Erie Algal Bloom Overview”* Maumee Bay State Park 3/11/09 (Invited)

2009 *International Association of Great Lakes Research, 52nd Annual*

2009 Lake Erie Commission Fall Quarterly Meeting (T. Bridgeman) Harmful Algal Blooms in western Lake Erie. September 28 (invited)

2009 Ohio Sea Grant. (S. Brannan) Cause and Effect: Sediment Plume creates perfect incubator for Microcystis bloom. Twineline. 31(3):3-5.

Publications and Manuscripts: (*Indicates graduate students)

Project Outcome
The main objective of our project, as stated in our proposal, was “to determine whether light and nutrient conditions inside the Maumee River plume act as an incubator of Microcystis blooms.” Using a combination of lake measurements and laboratory experiments and applying several techniques to measure algal health, we were able to provide evidence that

1) High turbidity favors the growth of Microcystis. Turbidity interacts with vertical mixing of the water column to create a light climate that is advantageous to species, such as Microcystis, that can regulate their buoyancy. High turbidity helps protect Microcystis from damage to photosynthetic apparatus due to intense sunlight while also causing low-light limitation in non-buoyant phytoplankton species.

2) Moderate mixing favors the growth of Microcystis. Under calm conditions, Microcystis may be trapped at the water surface in scums where it is damaged by intense sunlight. Under vigorous vertical mixing, Microcystis may not be able to maintain a higher average position in the water column than non-buoyant species.

3) Microcystis was phosphorus limited. Although, ambient nitrogen concentrations typically decline greatly in late summer in western Lake
Erie, N:P ratios indicated that *Microcystis* was not nitrogen limited for most of its growing season. Phosphorus was most often the more limiting nutrient.

Techniques used in this research included photosynthetic efficiency and capacity, macro- and micro-nutrient analyses, total protein content, stress proteins, and algal pigment ratios. The measurements and experiments are described in detail in the 2009 Master of Science Thesis entitled “Physiological Ecology of *Microcystis* Blooms in Turbid Waters of Western Lake Erie” by Justin Chaffin, the U. Toledo graduate student who was supported by this project, and in upcoming technical publications. An excellent user-friendly synopsis of the some of the results for a general readership was produced by Ohio Sea Grant’s *Twineline* magazine: “Cause and Effect: Sediment Plume creates perfect incubator for *Microcystis* bloom” (S. Brannan, 2009 Twineline 31(3):3

Lessons Learned

While most of the measurements of algal physiological status provided useful results that added to the overall picture, we were unable to complete the RNA-based molecular analyses that we had proposed. These analyses would have provided a more direct measure of *Microcystis* metabolic activity and relative growth rates. We were unable to locate the necessary primers and sequences needed for these analyses. Although we may surmise that environmental conditions that produce a high state of physiological health in algae also promote rapid growth of algae, we were unable to measure growth directly. Direct measures of algal growth rates under conditions of varying turbidity, nutrients, and mixing would be a logical next stage in this research.

Implications of Project

The results of the project suggest that the problem of *Microcystis* blooms in western Lake Erie could be reduced if turbidity (mainly caused by suspended sediments) in western Lake could be reduced. It has been suggested by some that the open-lake disposal of dredged materials contributes to lake turbidity and therefore contributes to *Microcystis* blooms. However, our research did not investigate the causes of turbidity, or the contribution of dredging disposal to turbidity. Without further data on the importance of open lake dredging disposal in causing turbid conditions in western Lake Erie, our results should not be applied to dredging policy.

Analyses of nitrogen, carbon, and phosphorus content in *Microcystis* suggests that although phosphorus deficiencies were only moderate, *Microcystis* growth is more limited by phosphorus than by nitrogen, therefore nutrient abatement efforts aimed at reducing phosphorus loading may provide a beneficial effect in reducing *Microcystis* blooms.
Summary Figures:

All figures are from Justin Chaffin’s MS thesis. See attached. Copyright 2009, Justin D. Chaffin.

Figure 1: Sampling sites in Western Lake Erie
Figure 2: Experimental chambers for manipulation of turbidity, mixing, and nutrients.

Figure 3: Summary figure showing effect of turbidity (Kpar), depth (surface, 1, 3, 5 m), and vertical mixing (weak, strong) on photosynthetic efficiency of *Microcystis* in Lake Erie 2008. High turbidity, increased depth, and strong vertical mixing all improve photosynthetic efficiency.
Figure 4: Results from Lake Erie indicating A) mixed waters result in improved photosynthetic efficiency of Microcystis over calm waters B) calm waters result in damage to photosynthetic apparatus of Microcystis (black bar) due to exposure of surface scum to full sunlight

Figure 5: Results of laboratory experiment showing agreement with lake observations
Figure 6: Total phosphorus (TP) and soluble reactive phosphorus (SRP), nitrate-N and ammonium-N in western Lake Erie, 2008. Sites MB 20 through 4P are arranged from closest to furthest from Maumee River mouth. TN:TP ratios below 29 (dashed line) indicate potential nitrogen limitation.
Attached Documents:

Chaffin, J. 2009. Physiological Ecology of Microcystis Blooms in Turbid Waters of Western Lake Erie. M.S. Thesis, University of Toledo. Due to size, this document is included in the report as a PDF file only. It can also be downloaded in full from the University of Toledo Library at http://utmost.cl.utoledo.edu/

Bridgeman, T. and W. Penamon*. 2009. Lyngbya wolle in western Lake Erie, Journal of Great Lakes Research, (in press). This document is attached here in paper form. It may also be downloaded from the Journal of Great Lake Research website: http://www.sciencedirect.com/science?ob=PublicationURL&tockey=%23T OC%2359068%23999999%2399999%239999%23FLA%23%23CDI=5906 8%26pubType=J%26auth=y%26acct=C000062866%26version=1%26urlVersion=0%26 useridd=7778205%26md5=bd0843c9d9996a20b08f9c4b9745a2ed

Brannan, S. 2009. Cause and Effect: Sediment Plume creates perfect incubator for Microcystis bloom. Twineline. 31(3):3-5. This document is attached in paper form and may be downloaded from the Ohio Sea Grant office at http://www.ohioseagrant.osu.edu/_documents/twineline/v31i3.pdf
Sediment plume creates perfect incubator for *Microcystis* bloom
Pea soup. Green Kool-Aid™. Spinach soufflé. No matter which food item comes to mind when you see harmful algal blooms (HABs) in Lake Erie’s Western Basin or washed up along its shorelines, their existence is certainly unwelcomed. Blooms of blue-green algae called *Microcystis*—a common species of cyanobacteria that can produce toxins harmful to animals and people—have shut down beaches, negatively affected sport fishing and boating, and created a headache for water treatment companies. Some scientists believe that the blooms also contribute to the Dead Zone, floating out to the Central Basin where they sink and decompose, consuming the limited oxygen near the lake bottom. The blooms had disappeared in the 1980s, when Lake Erie seemed to be on the road to recovery, but the last 10 years have seen their resurgence.

In his work at the Lake Erie Center at the University of Toledo, Ohio Sea Grant researcher Dr. Tom Bridgeman was on the scene to witness one of the first large *Microcystis* blooms that formed in Maumee Bay in 2003. In the next few years, he began to see a pattern.

“We noticed from satellite photos that the blooms overlapped almost exactly with this big, muddy river plume coming from the Maumee River,” he recalls. “We started to think there might be a connection between the plume and the bloom.”

So in the summers of 2007 and 2008, Bridgeman’s graduate student Justin Chaffin set out to see if there was indeed a connection between the two. It turns out that sediment plumes are the perfect incubator for the HABs, and limiting the mud that gets swept downriver and into Lake Erie’s Western Basin could go a long way toward reducing their occurrence.

In Full Bloom

Chaffin’s data collection endeavors didn’t start out successfully. The summer of 2007 was unusually dry, which meant fewer, smaller blooms. “I only found *Microcystis* the first and last days I went out to sample,” he says. The next year, however, was a different story. *Microcystis* levels were moderate all summer, and then, in August, a strong storm swept through the Western Lake Erie region, stirring up a lot of sediment that poured from the Maumee River and into the
Maumee Bay. As Bridgeman and Chaffin had predicted, by September a massive bloom spread over the muddy plume, starting from the river and extending nearly 75 miles to Avon Point.

“Justin found that the summer of 2008 had the largest, most extensive Microcystis bloom since we started keeping track in 2002,” Bridgeman explains. “It was 20 times larger than what we’d seen in 2002 and six times larger than 2007.”

Bridgeman and Chaffin boarded their 25-foot research vessel to collect samples six times, starting in late July 2008 before the large bloom and continuing through September, from six different sites: two near shore at the mouth of the Maumee River, two at mid-range, and two off shore, toward the center of Lake Erie’s Western Basin. The mid-range points, it turned out, had the perfect characteristics of a Microcystis incubator.

“Near shore is too shallow, so light is able to penetrate down to the lake floor, giving all species of algae more than enough light to thrive. Microcystis doesn’t have an advantage there,” Chaffin says. “Further out, the sediment and nutrients from the river plume are too dispersed. Those points in the middle have the right combination of turbidity, or muddiness, and depth.”

All things being equal, beneficial phytoplankton like green algae and diatoms will outgrow Microcystis, but the harmful cyanobacterium has one ability the others don’t: it can regulate its buoyancy. In a typical 24-hour period, a Microcystis alga gathers carbon in its cells via photosynthesis. The process causes it to grow heavier, and it eventually sinks toward the bottom of the lake. As it respires, or uses up its carbon stores, bubble-like structures called gas vacuoles are formed internally, causing it to rise to the surface again. Given enough time, Microcystis can adjust to conditions that might keep it from gathering light at the surface of the water. Very choppy water that would cause strong mixing of the water column, for instance, is too strong for it to overcome.

When waters are calm, 90% of all Microcystis cyanobacteria can be found at the surface. This can further shade other varieties of algae that don’t have the buoyancy benefit.

But there is a downside to Microcystis’ floating ability. In testing the samples, Chaffin found that bright, direct sunlight in calm water can actually damage the blue-green algae, regardless of the amount of mud in the water, as illustrated in Figure A. “On calm, sunny days, Microcystis floating on the surface became damaged quickly, showing loss of up to 50% of photosynthetic capacity in samples collected between 10 a.m. and 2 p.m.,” he explains. “Even after 2 to 5 hours of recovery time in the dark, traveling to the lab for testing, much of this damage was still unrepaired.” So the longer Microcystis is stuck in the sun’s direct rays, the more likely it is to be damaged significantly.

However, when the water is filled with sediment and breezes help to mix the water column, muddiness acts as a protective shield, as illustrated in Figure B. “On sunny days when the water was turbid and winds were blowing above 7 miles per hour, Microcystis was mixed more evenly throughout the water column, and no significant damage to its photosynthetic machinery was observed,” Chaffin relays. In having the opportunity to float just below the surface of the muddy water, the Microcystis can gather all the light it needs without sustaining ill effects.

Its responses even adapt to maximize its light-collecting efforts. “Any photosynthesizer will become more efficient at photosynthesis when it’s kept in low light conditions, whether it’s a small tree growing in a shaded forest or Microcystis growing in murky water,” Chaffin says. To prove that the cyanobacteria had made such an adjustment, Chaffin extracted the photosynthetic pigments from his Microcystis samples and tested them to determine how much chlorophyll and phycocyanin were present per gram of blue-green algae, knowing that both pigments are responsible for harvesting light energy. He found that Microcystis will produce double the amount of chlorophyll and six times the amount of phycocyanin, a pigment unique to cyanobacteria, when it’s in muddy water compared to when it’s in clear water.
But the turbidity of the Maumee River plume is not the only thing contributing to the massive Microcystis blooms. The river also washes high levels of nutrients into Lake Erie from agricultural runoff in the region. Chaffin tested his samples for the nutrients most commonly blamed for increased HAB growth: phosphorus and nitrogen.

“It’s typically thought that Microcystis does well when nitrogen is very low and phosphorus is high,” he explains. “Sure enough, when I tested the samples, the cyanobacteria had plenty of nitrogen but were still phosphorus deprived. So, the hypothesis still holds true: Microcystis is phosphorus limited in Lake Erie. The amount of phosphorus in the water is going to determine how much the cyanobacteria can grow.”

This result underscores the importance of determining the source of the phosphorus that has plagued Lake Erie for decades. Following the passage of the Great Lakes Water Quality Agreement and the Clean Water Act, phosphorus loading was limited in the 1970s, resulting in a cleaner, clearer lake. But even though the amount of phosphorus being dumped into the lake has remained below the amount recommended by management agencies, the level of soluble reactive phosphorus in the lake water has increased since the mid-1990s. Researchers believe this may be attributable to a shift in the kind of phosphorus being flushed into the lake via runoff. Phosphonates—a kind of phosphorus commonly found in chemical weed killers—might be more biologically available to harmful varieties of blue-green algae, such as Microcystis, than to beneficial algae. Scientists at Ohio Sea Grant and other agencies are currently working to solve this puzzle.

Clearing the Water
As for clearing up the turbid plume that originates at the Maumee River, any management practice that would limit erosion would improve the situation. “Impermeable surfaces, such as roads, parking lots, and even hard-packed land, do not allow water to infiltrate the ground,” Chaffin relates. “Instead, the water is forced into storm drains and streams, taking soil particles along with it. The key is to create barriers that slow down the water’s flow, allowing it to be absorbed. This applies to any watershed, not only Lake Erie.”

Plants are very good at capturing water in their root systems, so placing them in an area where water tends to flow is recommended. For instance, farmers can install buffer strips of vegetation around plowed fields and along rivers, and regional land managers can design drainage ditches with a number of turns to give rain water a chance to be absorbed. Wetlands also slow the flow of water and are natural contaminant filters, so restoring or creating them will reduce both sediment and nutrient loading.

People who are interested in doing their own part to limit soil runoff can catch rain from their home’s gutters in a rain barrel, the water from which can be reused for garden irrigation. Rain gardens—a planted strip along the edges of driveways, walkways, and any other impervious surface—will absorb storm water as well. Native plants, such as wild flowers, are particularly well suited to this task.

Storms will always stir up a certain amount of sediment in the water that already exists in the Maumee River and Lake Erie, simply because they mix the water column. However, implementing some of these land use practices could make a real difference.

“If we can limit the amount of sediment that gets into the river,” Bridgeman explains, “it would decrease the amount of sediment that gets kicked up during storms over time.”

For more information about this research, which was jointly funded by Ohio Sea Grant and the Lake Erie Protection Fund, contact Dr. Tom Bridgeman at thomas.bridgeman@utoledo.edu.

Microcystis’ Response to Light

Bright, direct sunlight in calm water can actually damage Microcystis, even if the water is muddy, because of its tendency to float on the water’s surface (Figure A). However, when the water is filled with sediment and breezes mix the water column, muddiness acts as a protective shield, helping the Microcystis to thrive (Figure B).
Lyngbya wollei in Western Lake Erie

Thomas B. Bridgemana,⁎, Wanda A. Penamonb,1

a Department of Environmental Sciences and Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
b Department of Curriculum and Instruction, Secondary Education, Science, University of Toledo, 2801 W. Bancroft, MS 958, Toledo, OH 43606, USA

\textbf{A R T I C L E I N F O}

Article history:
Received 22 July 2009
Accepted 25 November 2009
Available online xxxx
Communicated by Gary L. Fahrenstiel

\textbf{Index words:}
Lyngbya wollei
Plectonema wollei
Great Lakes
Lake Erie
Harmful Algal Bloom
Cyanobacteria

\textbf{A B S T R A C T}

We report on the emergence of the potentially toxic filamentous cyanobacterium, Lyngbya wollei as a nuisance species in western Lake Erie. The first indication of heavy \textit{L. wollei} growth along the lake bottom occurred in September 2006, when a storm deposited large mats of \textit{L. wollei} in coves along the south shore of Maumee Bay. These mats remained intact over winter and new growth was observed along the margins in April 2007. Mats ranged in thickness from 0.2 to 1.2 m and we estimated that one 100-m stretch of shoreline along the southern shore of Maumee Bay was covered with approximately 200 metric tons of \textit{L. wollei}. Nearshore surveys conducted in July 2008 revealed greatest benthic \textit{L. wollei} biomass (591 g/m² ± 361 g/m² fresh weight) in Maumee Bay at depth contours between 1.5 and 3.5 m corresponding to benthic irradiance of approximately 4.0–0.05% of surface irradiance and sand/crushed dreissenid mussel shell-type substrate. A shoreline survey indicated a generally decreasing prevalence of shoreline \textit{L. wollei} mats with distance from Maumee Bay. Surveys of nearshore benthic areas outside of Maumee Bay revealed substantial \textit{L. wollei} beds north along the Michigan shoreline, but very little \textit{L. wollei} growth to the east along the Ohio shoreline.

© 2009 Elsevier Inc. All rights reserved.

\textbf{Introduction}

The filamentous cyanobacterium \textit{Lyngbya wollei} (Farlow ex Gomont) Speziale and Dyck is a freshwater nuisance alga in the southeastern United States (Speziale and Dyck, 1992). \textit{L. wollei} is commonly found from North Carolina to northern Florida where it is usually described as growing in mats along the bottom of ponds and reservoirs or, in larger water bodies, in shallow, protected embayments (Speziale and Dyck, 1992; Cowell and Botts, 1994; Stevenson et al., 2004). Recently, molecular phylogenetic analysis of southern populations indicates that \textit{L. wollei} encompasses at least two species (Joyner et al., 2008). In southern states, \textit{L. wollei} mats may become perennial (Speziale and Dyck, 1991) and typically become apparent in summer when mats float to the surface where they may become a nuisance by clogging waterways (Beer et al., 1986). Reports of \textit{L. wollei} are not limited to the south. Descriptions of floating \textit{Lyngbya} mats (probably \textit{L. wollei}) in New England ponds date to the nineteenth century (Speziale and Dyck, 1992). Recently, \textit{L. wollei} infestations have been reported in two shallow lakes in Whiteshell Provincial Park near Winnipeg, Manitoba (Winnipeg Free Press 2003) where it is believed that the cyanobacterium was accidentally introduced by boats and trailers that are transported to southern states during winter. In the Great Lakes region, \textit{L. wollei} has recently been found to dominate the benthic macroalgae in a section of the St. Lawrence River that is influenced by the discharge of nearby nutrient-rich tributaries (Vis et al., 2008). In addition to the nuisance caused by large mats, North American blooms of \textit{L. wollei} have been found to produce paralytic shellfish toxins (PSTs) (Carmichael et al., 1997; Onodera et al., 1997), but to date the Lake Erie strain has not been reported to contain PSTs.

In 2006, large shoreline mats of a filamentous cyanobacterium fitting the description of \textit{L. wollei} appeared in western Lake Erie. Genetic and morphological analyses of this material indicated that Lake Erie \textit{L. wollei} could be grouped with one of the distinct \textit{L. wollei} subclusters (OTU3) found in the Florida panhandle region (J. Joyner, personal communication). While it remains uncertain whether the nuisance strain is an introduced form of \textit{L. wollei} from southeastern U. S.A., or a strain previously recorded in Lake Erie, \textit{Plectonema wollei} (Taft, 1942), the sudden appearance, size and endurance of the mats has caused great concern among shoreline property owners, beach managers, and public officials. In this report, we provide observations on the location, size, and biomass of shoreline mats and nearshore growing regions.

\textbf{Materials and methods}

Samples of the cyanobacterial mats along the shoreline and bottom of Maumee Bay were collected between April 2007 and July 2008 (Fig. 1). Identification of \textit{L. wollei} in Lake Erie was made using the description by Speziale and Dyck (1992). Cell and filament dimensions were measured using a Leica compound microscope at 400×. Initial assistance in identification was provided by R. Lowe at...
Bowing Green State University and later confirmed by preserved samples sent to B. Speziale (B. Speziale, Clemson University, personal communication).

A survey for the presence of *L. wollei* along the shoreline of southwestern Lake Erie was conducted in June and July 2008 along an 87 km stretch of shoreline from Stony Point, Michigan to Port Clinton, Ohio (Fig. 1). Beaches and other publicly accessible locations were surveyed visually and if filamentous algae were present, samples were collected for later identification. Benthic surveys for submerged *L. wollei* mats were conducted from small boats in July 2008 at 12 locations in or adjacent to Maumee Bay (Fig. 1). At several nearshore locations, a series of bottom samples were collected in transects perpendicular to the shoreline (indicated by lines in Fig. 1) along a range of bottom contours ranging from 0.5 m to 5 m in depth. The presence of *L. wollei* mats was detected using a benthic rake, and an Ekman grab sampler. The benthic rake was used to identify the presence of *L. wollei* beds at depths up to 3.5 m. If *L. wollei* was detected, 5 grab samples were collected at the location. *L. wollei* from each grab sample was separated from sediments using a sieve bucket (Wildco, 500 um mesh) for later biomass determination. At depths >3.5 m, grab samples only were collected. At the location that probably had the densest growth of *L. wollei* (Bolles Harbor 2), the thickness of the *L. wollei* bed prevented penetration by either an Ekman or a petite Ponar dredge. Samples from each location were examined using a compound microscope to identify algal filaments. *L. wollei* fresh wet was determined by pressing extraneous water from samples and then weighing. Dry weight was determined by drying samples at 65 °C to a constant weight.

Subsurface irradiance measurements, which are used here to calculate typical benthic irradiance in Maumee Bay were made at various locations in Maumee Bay and western Lake Erie between May and October of 2002–2005 as part of a water quality monitoring program. Measurements were made using an integrating quantum radiometer (Li-188B, Li-Cor, Inc.) equipped with a spherical sensor. The average irradiance just beneath the water surface (0 m) was calculated from all measurements (*N* = 112) and the average extinction coefficient for photosynthetically active radiation (*k*_{PAR}) for nearshore areas was calculated using only measurements taken within Maumee Bay or adjacent regions that are frequently subject to the turbid conditions of the Maumee River plume (*N* = 61).

The size and volume of the *L. wollei* mat along a 100 m relatively sheltered section of shoreline near the University of Toledo Lake Erie Center (Fig. 1, LEC) was estimated using a 60-m tape measure and graduated 1.3 m dowel rods to probe the thickness of the mat. A grid pattern was established along the shore with the thickness of the mat probed every 2 m. A post-hole digger was used in several locations to verify that the dowel rods accurately gauged mat thickness. Volume was calculated by dividing the mass into sections (ridges and low areas), multiplying mat thickness by surface area of the sections, then summing over the sections. Fresh biomass of the mat was estimated by weighing 12 L buckets full of cyanobacteria to determine *L. wollei* biomass per liter.

Results

Shoreline mats

Shoreline residents along southern Maumee Bay reported that mats of filamentous algae first appeared on their property following an unusual period from August 28 to September 2, 2006 when strong winds blew from the northeast for 6 consecutive days. During this period, wind speeds averaged 23 km/h (NOAA Databuoy Station SB011). The strong northwesterly winds temporarily elevated water levels in Maumee Bay to 50–100 cm above the season average (NOAA Station 9063085, Toledo) and caused extensive wave action along the shoreline. When the lake calmed and the water receded on September 2, mats of *L. wollei* were left behind on the shore. Shoreline areas protruding into the lake were not affected, while coves received large mats. We calculated that the 100 m shoreline in a small cove (sheltered on three sides) near the Lake Erie Center (Fig. 1, LEC) received approximately 200 metric tons of *L. wollei*.

The appearance of this large biomass over the course of a few days suggests that *L. wollei* had been growing unnoticed in Maumee Bay for
most of the summer before being dissolved by the storm. Plankton tows collected in Maumee Bay between May and August 2006 as part of a monitoring program did not contain filaments, indicating that *L. wollei* was not present in the water column during most of the summer. Shoreline mats were resistant to decay over the winter of 2006–2007, with green, potentially viable filaments found a few centimeters below the dried crust formed by the mat surface. In April 2007, substantial fresh material was added to the mats. Throughout the summer of 2007, terrestrial plants colonized the shoreline mats until in some places the mats were no longer visible beneath the vegetation. In early October, 2007, submerged mats growing at depths of 1–2 m at Maumee Bay State Park (Fig. 1, MBSP) were observed in the process of separating from the bottom and floating to the surface. On October 8, floating mats estimated in size from 3 to 150 m² were observed floating as far as 15 km from shore. Fragments of dreissenid mussels were often found entangled on the underside of floating mats. During this period, prevailing winds were from the south and west, therefore there was little addition to the shoreline mats. In April 2008 and again in April 2009, fresh material was observed either growing at the margin of the shoreline mats, or being washed ashore.

Shoreline survey

In July of 2008, a survey of *L. wollei* presence was conducted at 12 locations along the Lake Erie Shoreline between Stony Point, Michigan (SP) and Port Clinton, Ohio. *L. wollei* was found at 9 of the 12 locations (Fig. 1). In general, the prevalence of *L. wollei* on the shoreline decreased with increasing distance from Maumee Bay. Along the Michigan shoreline, *L. wollei* was scarce at locations (Fig. 1: SSF, SP) north of Bolles Harbor (Fig. 1, BH), where most of the filamentous algae found on the shore was *Cladophora* sp. Likewise, on the Ohio shoreline, *L. wollei* became more scarce east of Maumee Bay (Fig. 1: RB, SC, LP, CP). The material washed ashore in Maumee Bay and along the Michigan shoreline adjacent to the bay appeared to be fresh, suggesting transport from nearby growing areas. *L. wollei* masses that were found on the shoreline east of Maumee Bay near Swan Creek (SC) and Camp Perry (CP) had filaments that were fragmented and upon microscopic examination, found to be largely dead or senescent, suggesting transport from a more distant location.

Benthic mats

In order to determine areas of active growth, benthic surveys for submerged *L. wollei* mats were conducted in July 2008 at 12 main locations in or adjacent to Maumee Bay (Fig. 1). The greatest biomass of benthic mats was observed at two locations, Bolles Harbor (BH) and Maumee Bay State Park (MBSP), at distances of about 250–500 m from the shore at water depths from 1.5 to 3.5 m (Table 1). Mats of lower biomass were found over a similar range of depths near Luna Pier, MI. Very little benthic *L. wollei* was detected at sites east of Maumee Bay (Table 1: RB) or offshore sites (Table 1: OS1, OS2, OS3).

Measurements of PAR were used to determine irradiance levels in benthic areas where *L. wollei* was prevalent. The average sub-surface (0 m) light level measured from 2002 to 2004 was 1638 μE/m² s, and the average of nearshore PAR extinction coefficients (K_{PAR}) was 2.19. Applying the average K_{PAR} value to the average 0 m light level produced average mid-day benthic irradiance values of 6,841 μE/m² s (about 4% of subsurface light) at a depth of 1.5 m and 0.8 μE/m² s (about 0.05% surface light) at a depth of 3.5 m. In transects conducted perpendicular to shore from bottom depths between 0.5 m to 5.0 m, little *L. wollei* was found at depths shallower than 1 m, presumably due to wave action. *L. wollei* biomass increased with increasing depth to a maximum at depths between 1.6 m (BH1) and 3.5 m (LP2). At depths deeper than 3.0–3.5 m, *L. wollei* density tended to decrease. At most locations, substrate type did not change markedly with increasing depth. Although dissolved nutrient concentrations (N and P) were not measured for this study, a previous study indicates that nutrient concentrations decline over a span of several kilometers with increasing distance from the mouth of the Maumee River (Moorhead et al., 2003). Also, summer nutrient concentrations are usually sufficient to grow large blooms of nuisance algae (*Microcystis* sp.) throughout the bay. We would not expect a steep nutrient gradient over the range of the few hundred meters in which *L. wollei* beds were most prevalent. Therefore we suspect that the decrease in *L. wollei* density with depth was due more to light limitation than change in substrate type or nutrient concentrations.

Although no quantitative data were collected on substrate type, we observed some general associations between *L. wollei* and substrate type. In most cases where *L. wollei* appeared to be growing in place, the substrate consisted of sand, dreissenid clusters, fragmented dreissenid shells, or a mixture of the three. *L. wollei* mats were not found growing on very soft, silt sediments (Table 1: EB1–2, OS2–3), and only trace amounts were detected on hard, compacted clay bottom (Table 1: RB 1–5, OS1, TI).

Table 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Wet wt. (g/m²)</th>
<th>Dry wt. (g/m²)</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolles Harbor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH1</td>
<td>1.6</td>
<td>156±122</td>
<td>23±18</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>BH2</td>
<td>2.6</td>
<td>++ + +</td>
<td></td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>BH3</td>
<td>3.3</td>
<td>115±41</td>
<td>25±8</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>Luna Pier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP1</td>
<td>2.0</td>
<td>++ +</td>
<td>0.8±0.7</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LP2</td>
<td>3.5</td>
<td>53±25</td>
<td>9±4</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LP3</td>
<td>4.1</td>
<td>1±1</td>
<td>0.2±0.2</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>Erie Beach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB1</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>Silt</td>
</tr>
<tr>
<td>EB2</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>Silt</td>
</tr>
<tr>
<td>Turtle Is. (TI)</td>
<td>2.0</td>
<td>+</td>
<td></td>
<td>Compacted sediment</td>
</tr>
<tr>
<td>Grassy Is. (GI)</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>Soft</td>
</tr>
<tr>
<td>Bayshore Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP1</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>compacted, cobble</td>
</tr>
<tr>
<td>BP2</td>
<td>2.4</td>
<td>0</td>
<td>0</td>
<td>compacted, cobble</td>
</tr>
<tr>
<td>BP3</td>
<td>2.8</td>
<td>0</td>
<td>0</td>
<td>compacted, cobble</td>
</tr>
<tr>
<td>L. Erie Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE1</td>
<td>1.9</td>
<td>+</td>
<td></td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LE2</td>
<td>2.3</td>
<td>++</td>
<td></td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LE3</td>
<td>2.7</td>
<td>++ +</td>
<td></td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LE4</td>
<td>3.1</td>
<td>0</td>
<td>0</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>LE5</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>Maumee Bay SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBSP1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>Sand</td>
</tr>
<tr>
<td>MBSP2</td>
<td>1.5</td>
<td>+</td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td>MBSP3</td>
<td>2.0</td>
<td>591±361</td>
<td>75±45</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>MBSP4</td>
<td>2.8</td>
<td>501±167</td>
<td>70±23</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>MBSP5</td>
<td>3.1</td>
<td>186±122</td>
<td>27±16</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>MBSP6</td>
<td>3.4</td>
<td>164±164</td>
<td>22±22</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>MBSP7</td>
<td>3.5</td>
<td>2±2</td>
<td>0.5±0.5</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>Reno Beach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB1</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>RB2</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>RB3</td>
<td>3.1</td>
<td>0</td>
<td>0</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>RB4</td>
<td>4.1</td>
<td>2±2</td>
<td>0.5±0.5</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>RB5</td>
<td>5.3</td>
<td>1±1</td>
<td>0.2±0.2</td>
<td>Sand, dreissenids</td>
</tr>
<tr>
<td>Offshore Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS1</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td>Compacted</td>
</tr>
<tr>
<td>OS2</td>
<td>5.8</td>
<td>0</td>
<td>0</td>
<td>Silt</td>
</tr>
<tr>
<td>OS3</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>Silt</td>
</tr>
</tbody>
</table>

Discussion

The recent blooms of *Lyngbya wollei* in western Lake Erie are part of a trend towards increased coverage and biomass of filamentous
benthic algae in the Laurentian Great Lakes exemplified by the re-emergence of Cladophora sp. in eastern Lake Erie (Higgins et al., 2005) and Lake Michigan (Bootsma et al., 2005). The shift toward benthic macroalgae has been attributed in large part to the colonization of nearshore regions by dreissenid mussels which provide habitat for Cladophora by improving water clarity thereby increasing light to the benthos, recycling nutrients for algal growth, and providing surfaces for algal attachment (Hecky et al., 2004). In many ways, Maumee Bay would seem to be highly suitable for benthic macroalgae; it is rich in nutrients, shallow, and warm. However, while Cladophora has returned to nuisance levels in other nearshore areas of Lake Erie, Maumee Bay has remained relatively Cladophora-free.

The scarcity of Cladophora in Maumee Bay in Maumee Bay can likely be attributed to two resources: light and substrate. The minimum mid-day irradiance for Cladophora growth in Lake Erie has been reported to be about 50 μE/m² s (Lorenz et al., 1991). Given the high levels of suspended sediments and high average KPAR in Maumee Bay, Cladophora would be restricted to a narrow band around the shoreline at depths less than about 1.6 m. In addition to light levels, Cladophora is limited by the availability of suitable substrate for attachment. The rocky substrates preferred by Cladophora are uncommon in the Maumee Bay region, where typical bottom types are sand, silt, and consolidated sediments. Although dreissenid shells provide attachment for Cladophora, the shallower regions where there is enough light for Cladophora growth generally have few intact dreissenid clusters. More common in this high-energy environment is a layer of crushed dreissenid shells that is not suitable for Cladophora attachment (Higgins et al., 2005).

In contrast to Cladophora, southern U.S. strains of L. wollei require much less light (Pinowska et al., 2007), and therefore can grow at greater depths or under more turbid conditions. If the Lake Erie strain is similar to the southern strains in its low light requirements, this could help to explain the distribution of L. wollei in turbid Maumee Bay where peak biomass of L. wollei usually occurred at depths between 2.0 and 2.8 m, corresponding to average benthic irradiances between 18 and 53 μE/m² s. Pinowska et al., 2007 reported optimum light levels of 50 μE/m² s for southern L. wollei strains. Also, L. wollei does not require an attachment to hard substrates. Observations by divers in Maumee Bay indicate that L. wollei filaments form a loose association with the substrate by becoming partially buried in the types of sandy or crushed dreissenid shell substrates that are common in Maumee Bay. Gentle water currents were not seen to dislodge L. wollei, but divers could dislodge the mats with a light tug. Based on the prevailing light and substrate characteristics, much of the Maumee Bay area could be expected to be better habitat for L. wollei than for Cladophora sp. In most locations sampled, the type of substrate that supported the greatest density of L. wollei was a mixture of fragmented dreissenid shells and sand, therefore it is possible that by providing improved substrate, the colonization of western Lake Erie by zebra and quagga mussels may have assisted L. wollei in becoming established.

The nearshore areas beyond Maumee Bay have not been fully explored for benthic L. wollei mats, but the lack of fresh material washing ashore in 2008 suggests that benthic mats may not have been present east of Maumee Bay at that time. More recent observations indicate that the biomass of L. wollei washing ashore east of Maumee Bay has increased, however it is unknown whether this material represents an eastward expansion of benthic mats or washout from Maumee Bay. There could be several factors that affect the expansion of L. wollei east along the Lake Erie shoreline. These factors include nutrient concentrations (N, P), which are high in Maumee Bay, but decrease sharply with distance from the bay (Moorehead et al., 2008), greater bottom slope, which narrows the suitable depth contours for L. wollei growth, and less protection from wave energy.

Because of the difficulty of sampling year-round in western Lake Erie, the annual growth patterns of L. wollei in Lake Erie remain poorly understood. The appearance of substantial fresh L. wollei growth on the Lake Erie shoreline each April is especially intriguing because water temperatures at that time are much lower than the summer temperatures usually associated with cyanobacterial blooms. Following the brief period in April when fresh biomass is deposited on the shoreline, L. wollei grows obtrusively on the bottom during the summer months until late summer when mats begin to separate from the bottom and float to the surface. This pattern suggests that benthic mats are growing during the summer months until they reach sufficient thickness to trap gas bubbles underneath, which then causes the mats to become buoyant. This pattern of bubble accumulation and mat separation has been observed frequently in the southeastern U.S. strains of L. wollei (Speziale et al., 1991) with the difference that in the warmer climate, mats are benthic throughout the winter and become buoyant earlier in the spring or summer.

The maximum biomass/m² observed in western Lake Erie in 2008 was nearly 3 times higher than that observed in the St. Lawrence River in 2005 (27 g dry wt./m², Vis et al., 2008), but about 11 times lower than what has been recorded for L. wollei in the southeastern U.S. (6.6 kg/m² fresh weight, Speziale et al., 1991; 1 kg/m² dry wt., Cowell and Bots, 1994). However, it is likely that benthic biomass in Lake Erie frequently exceeds the maximum reported here because mats may have continued to accumulate biomass for a month or more after our sampling in July. Also in some of the areas of densest growth, benthic mats were too thick for penetration by Ekman or petite Ponar dredges.

In summary, since 2006, L. wollei has become established as a reoccurring nuisance algal species in the Maumee Bay region of western Lake Erie, with benthic mats growing throughout the summer and surface mats appearing in late summer. Patterns of biomass on the lake bottom suggest that L. wollei grows best at depths between about 1.5 and 3.5 m in a substrate of mixed sand and fragmented dreissenid shells, which would mean that a large portion of Maumee Bay may be potential habitat for L. wollei. The general decrease in L. wollei prevalence with increasing distance from Maumee Bay suggests that conditions outside of the bay are less suitable for L. wollei growth. However, the great mobility of floating L. wollei mats in late summer suggests that L. wollei will be able to disperse along the shoreline and eventually inhabit most shoreline areas having local conditions that are suitable for its growth.

Acknowledgments

We would like to thank the students and technicians who helped with this research: David Hartford, Steven Timmons, and Catherine Wulkusick. This research was supported by the Ohio Sea Grant College Program, Project R/ER-72, under Grant NA16RG2252 from the National Sea Grant College Program, National Oceanic and Atmospheric Administration and by funds provided by the Lake Erie Commission, Lake Erie Protection Fund Project #0-08. This is contribution 2009-15 from the Lake Erie Center.

References

LAKE ERIE PROTECTION FUND

SMALL GRANT - FINAL ACCOUNTING

Grant Number: SP 00-08

<table>
<thead>
<tr>
<th>Budget Categories</th>
<th>Original Budget</th>
<th>Funds Spent</th>
<th>Current Balance</th>
<th>Matching Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Salaries & Wages</td>
<td>$15,148.00</td>
<td>$15,187.37</td>
<td>$-39.37</td>
<td>$10,269.35</td>
</tr>
<tr>
<td>B. Fringe Benefits</td>
<td>$4,303.00</td>
<td>$3,485.31</td>
<td>$817.69</td>
<td>$3,271.98</td>
</tr>
<tr>
<td>C. Total Salaries & Benefits (A+B)</td>
<td>$19,451.00</td>
<td>$18,672.68</td>
<td>$778.32</td>
<td>$13,541.33</td>
</tr>
<tr>
<td>D. Non-expendable Equipment</td>
<td>$8,000.00</td>
<td>$8,000.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>E. Expendable Materials & Supplies</td>
<td>$14,778.00</td>
<td>$12,529.60</td>
<td>$2,248.40</td>
<td></td>
</tr>
<tr>
<td>F. Travel</td>
<td>$3,600.00</td>
<td>$4,899.52</td>
<td>$-999.52</td>
<td></td>
</tr>
<tr>
<td>G. Services or Consultants</td>
<td>$2,000.00</td>
<td>$2,800.00</td>
<td>$-800.00</td>
<td></td>
</tr>
<tr>
<td>H. Computer Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Publications/Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. All other direct costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Total Direct Costs (C thru J)</td>
<td>$47,829.00</td>
<td>$46,601.80</td>
<td>$1,227.20</td>
<td>$13,541.33</td>
</tr>
<tr>
<td>L. Indirect Costs</td>
<td>$4,805.00</td>
<td>$4,660.16</td>
<td>$144.84</td>
<td>$2,180.20</td>
</tr>
<tr>
<td>Total Costs (K + L)</td>
<td>$52,634.00</td>
<td>$51,261.96</td>
<td>$1,372.04</td>
<td>$35,723.53</td>
</tr>
</tbody>
</table>

Ohio Lake Erie Commission
One Maritime Plaza, 4th Floor
Toledo, OH 43604

p 419-245-2514
f 419-245-2519
www.epa.state.oh.us/oleo

I certify that the grant expenditures listed and descriptions of the charges are true and accurate to the best of my knowledge. These expenditures represent approved grant costs that have been previously paid for and for which complete documentation is on file.

[Date]

Project Director
Authorizing Agent
Fiscal Agent
Physiological Ecology of *Microcystis* Blooms in Turbid Waters of Western Lake Erie

By

Justin D. Chaffin

Submitted as partial fulfillment of the requirements for
The Master of Science degree in Biology

Advisor: Dr. Thomas B. Bridgeman

Dr. Scott A. Heckathorn

Dr. Ann E. Krause

College of Graduate Studies

The University of Toledo

August 2009
An Abstract of

Physiological Ecology of *Microcystis* Blooms in Turbid Waters of Western Lake Erie

Justin D. Chaffin

Submitted as partial fulfillment of the requirements for
The Master of Science degree in Biology

The University of Toledo

August 2009

Microcystis blooms are annual occurrences in western Lake Erie. Field measurements of *Microcystis* biovolumes from 2002–2008 show that blooms are most dense in waters adjacent to the Maumee Bay. This suggests that conditions within these waters support rapid *Microcystis* growth. Field measurements and a laboratory experiment showed that the high turbidity of the bay and adjacent waters alleviated high-light stress which results in less photo-inhibition, while *Microcystis* in less turbid water had more photo-inhibition. Damage occurs to *Microcystis* during a surface bloom as a result of prolonged time in high-intensity light. Further, *Microcystis* from nearshore water had higher protein content than that of offshore which indicates greater cellular health. This is likely a function of turbidity and high soluble nutrients in turbid waters. Therefore, reduced sediment loading would presumably increase growth stress for *Microcystis* and would lessen the magnitude of blooms seen in western Lake Erie.
Dedication

This thesis is dedicated to my family for getting me interested in Lake Erie very early in my life.
Acknowledgements

I would like to thank my advisor Dr. Thomas Bridgeman for just the right amount of help and guidance with my research. Also, I would like to thank my committee- Dr. Scott Heckathorn for teaching photosynthesis physiology and use of his laboratory instruments and Dr. Ann Krause for statistical help with my data and office space in her laboratory on campus. Further I need to thank several other researchers, faculty, and students who have helped me tremendously: Dr. Sasmita Mirsha for her assistance with biochemistry techniques, Dr. Daryl Dwyer for help while I was the teacher’s assistant for his biodiversity class, Dr. Cyndee Gruden and Olga Mileyeva-Biebesheimer for use of their lab’s sonicator, Dr. Jonathan Franz for analyzing my samples for nutrient content via ICP-OES, Kristi Mock for training me how to use the CHN auto-analyzer, Dr. Mike McKay for giving me a phycocyanin protocol, and my team of undergraduates for field assistance: Jesse Filbrun, Jill Reighard, Steve Timmons, Catie Wukusick, and Janine Cannell. I would also like to thank the Lake Erie Center for use of their boat and the Plant Research Science Center for green-house space.
Table of Contents

Abstract
Dedication
Acknowledgements
Table of Contents
List of Tables
List of Figures

I. Chapter 1 - Review of *Microcystis* Blooms in Western Lake Erie and Overview of Thesis
 General Background
 Environmental Factors Associated with a *Microcystis* Bloom
 Goals of this Thesis
 Overview of Subsequent Chapters in this Thesis
 Literature Cited

II. Chapter 2 - An Eco-physiological trade-off of *Microcystis*: Buoyancy results in photosynthetic damage.
 Abstract
 Introduction
 Methods
 Results
 Discussion
 Literature Cited
 Tables
III. Chapter 3 - Measurements of *Microcystis* cellular health in western Lake Erie during the 2008 bloom indicate the high turbidity and nutrients support rapid growth.

Abstract
Introduction
Methods
Results
Discussion
Literature Cited
Tables
Figures

IV. Chapter 4 - Conclusions

V. Chapter 5 - Detailed Methods and Supplemental Data

Experiment to Determine Photosynthetic Pigment Concentration
Phytoplankton Community of Western Lake Erie 2007-2008
Complete Methods for Laboratory Experiment
Complete Methods for Protein Extraction and Quantification
Literature Cited
Tables
Figures
List of Tables

Table 2-1. Equations used to calculate pigment concentration 61
Table 2-2. ANCOVA table for photosynthetic efficiency 62
Table 2-3. ANCOVA table for pigment content 63
Table 2-4. P values of photosynthetic efficiency experiment 64
Table 3-1. Criterion for nutrient deficiency 97
Table 3-2. Spatial pattern of Microcystis in western Lake Erie 98
Table 3-3. Concentration of pigments in the laboratory experiment 99
Table 3-4. P values for pigment concentrations 100
Table 5-1. Macronutrients of Microcystis 124
Table 5-2. Micronutrients of Microcystis 125
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Map of six sample sites in western Lake Erie</td>
</tr>
<tr>
<td>2-2</td>
<td>Diagram of experiment</td>
</tr>
<tr>
<td>2-3</td>
<td>In situ photosynthetic efficiency</td>
</tr>
<tr>
<td>2-4</td>
<td>Light-response curve</td>
</tr>
<tr>
<td>2-5</td>
<td>Photosynthetic efficiency as function of turbidity</td>
</tr>
<tr>
<td>2-6</td>
<td>K_m of the light-response curves on strongly mixed dates</td>
</tr>
<tr>
<td>2-7</td>
<td>Pigment content of Microcystis</td>
</tr>
<tr>
<td>2-8</td>
<td>Stained protein gels of Microcystis</td>
</tr>
<tr>
<td>2-9</td>
<td>Rubisco content of Microcystis</td>
</tr>
<tr>
<td>2-10</td>
<td>Photosynthetic efficiency of experiment</td>
</tr>
<tr>
<td>2-11</td>
<td>Total carotenoids of experiment</td>
</tr>
<tr>
<td>2-12</td>
<td>Microcystis abundance in western Lake Erie in 2008</td>
</tr>
<tr>
<td>3-1</td>
<td>Map of six sample sites in western Lake Erie</td>
</tr>
<tr>
<td>3-2</td>
<td>Diagram of experiment</td>
</tr>
<tr>
<td>3-3</td>
<td>Nutrient concentrations of western Lake Erie in 2008</td>
</tr>
<tr>
<td>3-4</td>
<td>Total protein content of Microcystis</td>
</tr>
<tr>
<td>3-5</td>
<td>Nutrient deficiency of Microcystis</td>
</tr>
<tr>
<td>3-6</td>
<td>Phosphorus deficiency of Microcystis</td>
</tr>
<tr>
<td>3-7</td>
<td>Chorophyll (chl) (a) and phycocyanin (PC) concentration of experiment</td>
</tr>
<tr>
<td>5-1</td>
<td>PC fluorescence after grinding</td>
</tr>
<tr>
<td>5-2</td>
<td>Comparison of PC fluorescence of various sonication lengths</td>
</tr>
<tr>
<td>5-3</td>
<td>Absorbance spectra of PC extracted</td>
</tr>
</tbody>
</table>
Figure 5-4. Comparison of chl a extraction methods 129
Figure 5-5. Chl a isopleths of western Lake Erie 130
Figure 5-6. PC isopleths of western Lake Erie 131
Chapter One

Review of *Microcystis* Blooms in Western Lake Erie and Overview of Thesis

General background

History of Lake Erie Eutrophication

Lake Erie experienced eutrophication during the mid-1900s. Yearly average density of phytoplankton increased by 30 times from 1929 to 1963 (Davis 1964). During this period there was a shift in species composition that indicated oligotrophic conditions to a species composition that indicated eutrophic conditions. For example, the diatom *Asterionella* (previously *Melosira*) was dominant during spring in the first half of the century, then was replaced by *Fragilaria* and *Aulacoseira* in later years (Davis 1964). Diatoms such as *Asterionella*, *Synedra*, and *Aulacoseira* that were dominant during the autumn of earlier years were later replaced by *Fragilaria*, green algae, and cyanobacteria species (Davis 1964). Extensive eutrophication and poor overall water quality were observed in the western basin with the loss of the burrowing mayfly (*Hexagenia* spp.) in the mid 1950s (Britt 1955), fish kills due to anoxia (Matisoff and Ciborowski 2005), and heavy surface blooms of cyanobacteria in the 1960s and 1970s (Matisoff and Ciborowski 2005).

In response to eutrophication, the United States and Canada passed the Great Lakes Water Quality Agreement in 1972 with the goal of decreasing phosphorus loads
into the lake (DePinto et al. 1986). Following pollution control programs of the 1970s, lake phosphorus concentrations declined (DePinto et al. 1986; Matisoff and Ciborowski 2005), which resulted in a reduction of total phytoplankton biomass (Makarewicz 1993). Furthermore, cyanobacteria were a relatively small composition of the phytoplankton community (Makarewicz 1993). Since the mid 1990s, however, in spite of nutrient control programs, total phytoplankton biomass has increased (Conroy et al. 2005b) and cyanobacteria blooms have reoccurred in western Lake Erie (Brittain et al. 2000). Unlike cyanobacteria blooms prior to nutrient controls, which were dominated by Anabaena spp. and Aphanizomenon spp. (nitrogen fixers), Microcystis aeruginosa (non-nitrogen fixer) dominates the current blooms of western Lake Erie (Brittain et al. 2000; Rinta-Kanto et al. 2005). The Microcystis bloom of 2003 was perhaps the most severe in recent years, but of a greater concern is that blooms have become yearly occurrences in western Lake Erie over the last decade (Chaffin et al. 2008). The reoccurrence of Microcystis blooms, presence of large algal mats of the cyanobacteria Lyngbya wollei (personal observation), and discovery of the non-native cyanobacteria Cylindrospermopsis (Conroy et al. 2007) suggest that Lake Erie may be moving towards a more eutrophic state.

Microcystis as a concern

Microcystis is able to completely exclude other phytoplankton via buoyancy regulation under light-limiting conditions (Reynolds et al. 1987; Downing et al. 2001) and allelopathic mechanisms (Sukenik et al. 2002), allowing it to reach a high density and forming surface blooms. During a bloom, the aesthetic value of lakes is dramatically reduced. These algal blooms wash ashore, resulting in foul-smelling rotting algal mats, decreasing the quality of recreational boating and beaches. *Microcystis* is capable of
producing microcystin, a hepatotoxin that has raised many human health concerns worldwide (Ouellette and Wilhelm 2003; Falconer 2007). Fish mortality can be high (Rodger et al. 1994), and livestock can be poisoned, during cyanobacteria blooms (Falconer 2007). The microcystin concentration limit of 1 µg L\(^{-1}\), established by the World Health Organization, is often surpassed during blooms in western Lake Erie and may have an impact on drinking water for millions of people (Brittian et al. 2000; Rinta-Kanto et al. 2005; Dyble et al. 2008).

Microcystis annual cycle

Microcystis is found in many eutrophic lakes world-wide (Visser et al. 2005). During the winter and spring months, *Microcystis* cells overwinter on the surface of lake sediments (Preston et al. 1980). Summer *Microcystis* blooms may be attributed to benthic recruitment of colonies that re-inoculate the water column during the spring (Verspagen et al. 2005). *Microcystis* remains photochemically active on sediments throughout the year, but no difference in internal buoyancy was seen, suggesting that passive processes (wind suspension, bioturbation) release colonies into the water column (Verspagen et al. 2004). Increasing water clarity, which allows light to reach the sediments, may also play a role in *Microcystis* recruitment (Reynolds and Bellinger 1992). Once in the water column, and water temperature exceeds 15 °C (Reynolds 1973), *Microcystis* takes advantage of high nutrients (Steinberg and Hartmann1988; Downing et al. 2001) and water column stability (Reynolds et al. 1984, Huisman et al. 2004) to form scums on the surface of lakes. A wide range of maximum growths rates for *Microcystis* has been reported, ranging from less than 0.17 (Ibelings et al. 1994), 0.50 divisions day\(^{-1}\) (Reynolds et al. 1984), 0.67 (Baldia et al. 2007), to 1.6 divisions day\(^{-1}\) (Nalewajko and
Murphy 2001). In the fall, cooler water temperatures prevent *Microcystis* from metabolizing accumulated carbohydrate, preventing it from regaining positive buoyancy (Thomas and Walsby 1986; Visser et al. 1995). The rate that *Microcystis* colonies settle to the lake bottom is highest during and after blooms (Verspagen et al. 2005), where they overwinter until the following summer (Preston et al. 1980).

The re-occurrence of *Microcystis* blooms were first documented in western Lake Erie in 1995 (Brittain et al. 2000), and have been observed nearly every year since (Vincent et al. 2004; Chaffin et al. 2008). The timing of these blooms varies greatly among years; blooms may be first seen in early July or not until September (Chaffin et al. 2008). Chaffin et al. (2008) quantified the magnitude of the annual blooms in western Lake Erie from 2002 to 2008 and found that the *Microcystis* biomass is highly correlated with annual summer Maumee River discharge. It is suspected that the source of *Microcystis* is the lake sediments (Rinta-Kanto et al. 2009) or that tributaries are loading *Microcystis* into the lake (Conroy 2008). It has been observed that the spatial pattern of *Microcystis* blooms in western Lake Erie is very similar to the suspended sediment plume of the Maumee River (personal observation).

Environmental factors associated with a *Microcystis* bloom

Role of nutrients in *Microcystis* blooms

Nutrients, especially phosphorus, typically limit freshwater offshore productivity. Traditionally, low total nitrogen (TN) to total phosphorus (TP) ratio is a predictor of cyanobacteria (Smith 1983). However, high TP may be more sufficient in predicting cyanobacteria blooms. Phosphate added experimentally to water from all three basins of
Lake Erie resulted in an increase of all types of phytoplankton, indicting phosphorus limitation (Wilhelm et al. 2003). In nutrient-poor waters, *Microcystis* is generally out-competed for P, due to higher P uptake kinetics of green algae and diatoms (Baldia et al. 2007; Tilman et al. 1986). Cyanobacteria have a TP threshold of 10 µg L\(^{-1}\) (Steinberg and Hartmann 1988) and potential for bloom formation increases with increasing TP (Downing et al. 2001). The likelihood of a bloom plateaus at about 80% when lake TP reach 100 µg L\(^{-1}\) (Downing et al. 2001). Laboratory experiments show that *Microcystis* growth increases linearly with TP and plateaus at 220 µg L\(^{-1}\) TP (Baldia et al. 2007). Above this concentration, *Microcystis* accumulates enough P (Baldia et al. 2007) to sustain a constant rate of cell growth for five (Tsukada et al. 2006) to nine days (Nalewajko and Murphy 2001).

Maumee Bay and western Lake Erie have very high phosphorus concentrations compared to other regions of the Great Lakes. The Maumee River watershed is predominantly agricultural, which results in a high amount of run-off that discharges a large TP loading into western Lake Erie (Baker and Richards 2002). TP in Maumee Bay and western Lake Erie often exceed 150 µg L\(^{-1}\), and TP decreases with increasing distance from the mouth of the Maumee River (Moorhead et al. 2008). Annual phytoplankton biomass has increased in western Lake Erie, while total phosphorus loads have remained constant over the past 15 years (Conroy et al. 2005b). This increase in biomass could be a result of the soluble phosphorus fraction of the total load, which has been increasing in recent years (Baker et al. 2008). Or it could be from alternative phosphorus sources such as glyphosate (Ilikchyan et al. 2009), which is the active
ingredient in herbicides, or from internal phosphorus loading from benthic invertebrate bioturbation (Chaffin and Kane 2009).

Non-nitrogen-fixing algae (diatoms, green algae) and cyanobacteria (*Microcystis, Oscillatoria*) need inorganic nitrogen to thrive. *Anabaena* and *Aphanizomenon* are able to fix atmospheric nitrogen. Supplies of nitrogen tend to be depleted quicker than phosphorus at periods of high algal growth, which may result in nitrogen limitation (Kim et al. 2007). Thus, under nitrogen-limiting conditions, nitrogen-fixing cyanobacteria will have an advantage over *Microcystis* and other non-nitrogen fixers (Steinberg and Hartmann 1988). *Microcystis* favors NH$_4$ over NO$_3$ as an N source, and it would be out-competed for N at high NO$_3$ concentrations (Kim et al. 2007). Differences in NH$_4$ and NO$_3$ were observed in Steilacoom Lake, Washington, between years of *Microcystis* bloom and non-bloom years (Jacoby et al. 2000). During the bloom year, NO$_3$ was very low (< 20 µg L$^{-1}$) and very high in the non-bloom year (> 100µg L$^{-1}$) (Jacoby et al. 2000). Sufficient NH$_4$ when NO$_3$ is depleted would allow *Microcystis* to persist (Jacoby et al. 2000). Unlike P, *Microcystis* is unable to store N to maintain a constant growth rate (Baldia et al. 2007).

During the 1960s and 1970s, cyanobacteria blooms consisted of mostly *Anabaena* and *Aphanizomenon*, species able to fix atmospheric nitrogen. The GLWQA, which targeted phosphorus, was not passed until 1972. The nutrient load from the Maumee River would have had a lower TN:TP before the agreement as compared to after its passage. Rapid algal growth would have been stimulated by high TP that then would have depleted available nitrogen, favoring the nitrogen fixers. The current *Microcystis* blooms suggest that the current ratio of TN to TP loading would be greater than ratios
that lead to blooms of nitrogen-fixing species. Large blooms of Microcystis could give away to nitrogen-fixing species once nitrogen becomes limiting.

Role of turbidity and mixing in Microcystis blooms

Light may become limiting to algae in highly turbid waters. Light is attenuated exponentially with water depth and attenuation is greater in turbid or highly productive waters (Kirk 1994). The photic zone is the area of the water column that is illuminated by > 1% of surface light intensity. The depth of 1% light marks the approximate lower margin of the photic zone depth and is also commonly referred to as the compensation point between algal photosynthesis and respiration (Wetzel 2001). In clear and/or shallow waters where 1% of surface light is able to reach the lake bottom, phytoplankton and benthic algal growth is stimulated (Lowe and Pillsbury 1995). Further, light does not need to reach the lake bottom to achieve net phytoplankton photosynthesis because vertical mixing of the water column will continually mix phytoplankton in and out of the photic zone. However, light limitation may occur in highly turbid waters generated from river sediment plumes and/or resuspension of lake sediments. In general, light is considered limiting when the photic zone is less than 16% of the mixing depth (Alpine and Cloern 1988). However, the compensation point is species specific and the depth at which it occurs is called the ‘critical depth’ for each species (Huisman et al. 1999a,b,c). Phytoplankton that remain below their critical depth will experience losses (Huisman et al. 1999b,c; 2002). Phytoplankton are dependent on either vertical mixing or buoyancy regulation if the critical depth exceeds the lake depth (Huisman et al. 1999b,c; 2002; 2004).
Cyanobacteria are able to regulate buoyancy via colony size (Brooks et al. 2003), regulation of gas vacuole synthesis, turgor pressure applied to gas vacuoles, and the accumulation of carbohydrate (Reynolds et al. 1987; Konpka et al. 1987; Kromkamp and Walsby 1990). In weakly mixed waters, *Microcystis* (and other buoyant phytoplankton) are able to escape vertical mixing once their upwards migration rate exceeds the turbulent diffusion rate (Huisman et al. 1999c, 2004). On the other hand, in strongly mixed waters, the turbulent diffusion rate exceeds *Microcystis*' upward migration rate, thus keeping *Microcystis* and other phytoplankton entrained in mixing (Huisman et al. 1999c, 2002, 2004). This usually occurs once wind speeds above the water’s surface exceed 3 m s\(^{-1}\) (Webster and Hutchinson 1994; Visser et al. 2005). The rate of turbulent diffusion that is equal to the rate of *Microcystis* migration is termed ‘critical turbulence’ (Huisman et al. 1999a). If vertical mixing is less than the critical turbulence, *Microcystis* will float towards the surface accessing light needed for photosynthesis. If weak mixing continues, *Microcystis* will increase in biomass, developing surface scums that are capable of absorbing 90% of surface light after 1 cm (Ibelings 1996), which in turn further shades sinking species (Huisman et al. 2004). *Microcystis* surface scums can be very dynamic throughout the day. This gives *Microcystis* an ecological advantage over sinking species and is the reason why it is believed that warmer summers with less violent storms will result in more cyanobacteria blooms (Jöhnk et al. 2008; Paerl and Huisman 2008). Colonies may become negatively buoyant and descend after accumulating enough carbohydrate, while accessing nutrients at deeper depths (Kromkamp and Walsby 1990; Visser et al. 1997). Descending colonies will regain positive buoyancy at deeper depth
once accumulated carbohydrate is respired (Kromkamp and Walsby 1990; Visser et al. 1997).

Turbidity may play a role in promoting Microcystis blooms in western Lake Erie. The main source of turbidity into western Lake Erie is the Maumee River (Richards et al. 2008). Turbidity is usually highest in the bay (secchi depths > 30 cm) and water clarity increases with distance into the lake (Moorhead et al. 2008). The depth and turbidity gradients into the lake may favor buoyant Microcystis in the competition for light in waters that are still highly turbid but where depth has increased. In computer simulations Huisman et al. (1999c) found that background turbidity (i.e. suspended sediments) did not change the competitive outcome between buoyant and sinking phytoplankton. However, if the water column is weakly mixed, background turbidity is high, and depth is great enough so that light does not reach the lake bottom, heavily dense phytoplankton will sink out of the photic zone, and thus fail to grow (Huisman et al. 2002). These conditions would favor a buoyant phytoplankton species such as Microcystis. Further, suspended sediments may play a key role in fostering algal growth by reducing high light stress.

Role of Dreissena mussels in Microcystis blooms

Many recent studies have attributed cyanobacteria dominance to exotic dreissenid mussels. In Saginaw Bay (Lake Huron), total phytoplankton was directly proportional to TP and inversely proportional to dreissenid density, but cyanobacteria is directly proportional to both TP and dreissenid density (Bierman et al. 2005). Raikow et al. (2004) found a positive influence of Dreissena on Microcystis in lakes with < 25 µg L\(^{-1}\) TP, but no influence in lakes with > 25 µg L\(^{-1}\) TP. The reoccurrence of cyanobacteria
blooms in western Lake Erie was correlated with the arrival of dreissenid mussels in the 1990s. Dreissenids decreased the resilience and resistance of Lake Erie (Conroy and Culver 2005) and favor dominance of nitrogen-fixing cyanobacteria by excreting at low nitrogen to phosphorus ratios (Arnott and Vanni 1996; Conroy et al. 2005a), slowing sediment uptake of phosphorus (Bykova et al. 2006), and selective rejection of toxic species (Vanderploeg et al 2001). In western Lake Erie, however, Microcystis bloom intensity is highly variable among years (Chaffin et al. 2008). It is likely that dreissenid population fluctuations alone cannot explain the high variability of Microcystis bloom intensity among years.

Goals of this thesis

The goal of this research is to gain a better understanding of the environmental factors that promote Microcystis growth in western Lake Erie. Observations of Microcystis blooms in western Lake Erie over the past decade lead to the general hypothesis that the Maumee River has a large influence on bloom formation because the spatial pattern of the blooms correlates with the pattern of the sediment plume generated by the river. The Maumee River loads a high amount of nutrients into the lake that may fertilize Microcystis blooms and suspended sediments that might reduce light stress and/or reduce light to limiting levels in deeper waters of the lake. Calm light-limiting waters would favor buoyant phytoplankton. Therefore, the general hypothesis of this research is that Microcystis growth is greatest in the sediment plume of the nearshore waters because of the high concentration of nutrients and suspended sediments. If, as hypothesized, high nutrient and low-light conditions in river plumes are important in the
role of Microcystis blooms, the results of this research can help to inform efforts in preventing or lessening the intensity of blooms. Results of this study can inform those who develop recommendations to suppress sediment loading into the lake and shift timing of shipping channel dredging, therefore increasing water clarity. Because phosphorus is mostly bound to sediments, reducing sediments would also reduce the amount of nutrients entering the lake. Results of this study can also be applied by managers of other areas of the Great Lakes with frequent cyanobacteria blooms generated from favorable conditions from river discharge, i.e. Saginaw River of Lake Huron and Sandusky River of Lake Erie.

Overview of subsequent chapters in this thesis

Chapter 2. An Eco-physiological trade-off of Microcystis: Buoyancy results in photosynthetic damage.

Surface scums allow Microcystis to exclude sinking phytoplankton. However, these scums are exposed to high light intensities that can be damaging to photosynthesis. This chapter presents data that suggests that these surface scums are highly damaged by sunlight, but have the advantage of excluding other phytoplankton through shading.

In this chapter, chlorophyll fluorescence measurements were used to determine algal photosynthetic efficiency. Photosynthesis is an important part of algal metabolism that leads to carbon fixation and growth, and chlorophyll fluorescence is used to monitor net photosynthesis. A brief review of chlorophyll fluorescence is needed to acquaint unfamiliar readers to these measurements. Photosynthesis is greatly affected by light intensity and changes in photosynthetic efficiency will be reflected by changes in
chlorophyll fluorescence, which is easily measureable (Schreiber et al. 1994). Photons absorbed by chlorophyll have one of three fates. The majority of energy absorbed is used to drive photochemistry (photochemical quenching, PQ) or dissipated as heat (non-photochemical quenching, NPQ). Chlorophyll fluorescence is the small fraction of energy absorbed that is then re-emitted as light, and analysis of chlorophyll fluorescence can be used to determine the state of photosynthesis physiology. For example, decreasing efficiency of electron transport, most notably photosystem II (PSII), results in a decrease of $F_v/F_m ((F_m - F_o)/F_m$; where F_m is the maximum fluorescence after a saturating light pulse, and F_o is basal fluorescence before the saturating light pulse; Schreiber et al. 1994). PSII is often the weak link of photosynthetic electron transport, as it is most vulnerable to light-induced damage, i.e. photoinhibition (Maxwell and Johnson 2000). PSII absorbs light energy, causing the donation of an electron to Q_A. PSII does not accept another photon until it passes one electron onto the subsequent electron acceptors of the electron transport chain (Maxwell and Johnson 2000). During this time, the reaction centers are ‘closed,’ and a greater percentage of closed reaction centers results in decreased photosynthetic efficiency and an increase in PSII fluorescence (Maxwell and Johnson 2000). Two measurements of chlorophyll fluorescence were used to determine PSII efficiency. Quantum yield of PSII electron transport (Φ_{et}) is a measure of the relative rate of electron transport of PSII, which is dependent on (1) the photosynthetic efficiency of open PSII reaction centers of light adapted samples to capture light energy and utilize it to drive photochemical reactions, and (2) the relative efficiency with which post PSII electron transfer keeps PSII open (Genty et al. 1989). Φ_{et} decreases with an increased proportion of closed PSII reaction centers (Genty et al. 1989) and Φ_{et} decreases
with increasing light intensity (Schreiber et al. 1994; Maxwell and Johnson 2000). Electron transport correlates well with carbon fixation at a given light intensity (Genty et al. 1989). Decreases in Φ_{et} indicate damage to, or protective down-regulation of electron transport (Krause 1988). Pre-adapting samples to dark conditions allows all reaction centers to open and the ratio of variable-to-maximum chlorophyll fluorescence (F_v/F_m) can be determined, which measures maximum PSII efficiency (or capacity) (Schreiber et al. 1994; Maxwell and Johnson 2000). Decreases in F_v/F_m indicate damage to PSII. In healthy higher plants and green algae, F_v/F_m typically ranges from 0.80 to 0.83 and less than 0.60 for other phytoplankton (Schreiber et al. 1994; Büchel and Wilhelm 1993), however 0.40 to 0.50 are typical values for phytoplankton collected from a lake (Marwood et al. 2000).

Chapter 3. Measurements of *Microcystis* cellular health in western Lake Erie during the 2008 bloom indicate the high turbidity and nutrients support rapid growth.

Microcystis is most abundant in waters adjacent to the Maumee Bay. These waters are high in nutrients and maybe become light-limited. Also, *Microcystis* from these waters have higher cellular health than in the offshore.

Chapter 4. Conclusion.

This summarizes the work of chapters two and three and offers recommendations to mitigate the intensity of the *Microcystis* blooms in western Lake Erie.

Chapter 5. Detailed Methods and Supplemental Data.

This chapter contains detailed descriptions of methodology that are more briefly summarized in chapters two and three. This chapter also describes trials and experiments
for determining algal pigment concentrations, including phycocyanin and chlorophyll a, and pigment results form western Lake Erie. Also, complete methods for the laboratory experiment and protein extractions are presented. Macro and micronutrients concentrations of *Microcystis* are given here.

Literature Cited

Chapter Two.

An Eco-physiological trade-off of *Microcystis*: Buoyancy results in photosynthetic damage.

Abstract

Microcystis is generally predicted to have an ecological advantage over sinking phytoplankton in calm turbid waters because buoyancy regulation allows access to more light and surface scums further shade non-buoyant phytoplankton. However, exposure to full sunlight may have negative effects on *Microcystis* physiology, particularly photosynthesis. Field sampling of the 2008 bloom in western Lake Erie and laboratory experiments were used to study the photosynthetic status of *Microcystis* in relation to turbidity, vertical mixing, and nutrients. Photosynthetic efficiency (quantum yield of photosystem II electron transport) (Φ_{et}) of *Microcystis* from the lake was measured throughout the summer. Φ_{et} was greatest under vertical mixing conditions and lower in calm waters. Under both mixing and calm conditions, Φ_{et} increased with turbidity at all depths. Light-response curves revealed that strong vertical mixing combined with high turbidity offered *Microcystis* more protection from photosynthetic damage than did high turbidity alone. Because turbidity often co-varies with nutrients in Lake Erie, laboratory experiments were used to separate the effects of turbidity and nutrients (P, N). Φ_{et} was highest in the mixed turbid treatment and lowest in the calm clear treatment. A range of nutrient concentrations typical of western Lake Erie did not affect Φ_{et}. Thus, an eco-
physiological trade-off exists between being highly competitive for light and decreased photosynthetic efficiency in calm turbid waters.

Introduction

Dense *Microcystis* blooms are an annual occurrence in western Lake Erie (Chaffin et al. 2008). Western Lake Erie is generally highly turbid and nutrient-rich because of suspended sediment and nutrient loading from the Maumee River (Richards et al. 2008; Baker and Richards 2002). Sediment resuspension from the lake bottom is also a likely source of turbidity and nutrients because of the shallowness (Søndergaard et al. 2003). *Microcystis* blooms appear to originate in the sediment plume, which suggests that conditions in the turbidity support rapid growth. The effect of high nutrients on the development of *Microcystis* blooms has been studied in depth, however the effect that the sediments have on *Microcystis* photosynthesis has been neglected. This study uses an eco-physiological approach to study how *Microcystis* photosynthetic efficiency is affected by turbidity.

High turbidity may cause light limitation in phytoplankton due to the rapid attenuation of light by suspended particles (Alpine and Cloern 1988); however, very shallow bays may not be light limited despite the high turbidity (Conroy 2008). If water depth increases while high turbidity is maintained, this may bring about light limitation as algal cells spend an increasing proportion of the time at low light levels. These conditions would favor buoyant species that can remain in the photic zone, such as the highly-buoyant cyanobacterium *Microcystis*. Cyanobacteria are able to regulate their buoyancy via colony size (Brookes et al. 2003), gas vacuole synthesis, turgor pressure, and
accumulation/depletion of carbohydrate produced by photosynthesis (Reynolds et al. 1987; Konpka et al. 1987; Kromkamp and Walsby 1990). *Microcystis* will accumulate carbohydrate while in the light near the surface, then become negatively buoyant and sink (Kromkamp and Walsby 1990; Visser et al. 1997). In deeper darker depths, *Microcystis* will respire accumulated carbohydrate becoming less dense, and float up towards the surface (Kromkamp and Walsby 1990; Visser et al. 1997). Thus, in light-limited waters, buoyancy gives *Microcystis* an advantage in the competition for light.

Water column mixing plays a large role in determining the outcome of the competition for light among buoyant and sinking phytoplankton (Huisman et al. 1999b; 2004). Buoyancy only allows *Microcystis* to gain an advantage in relatively stable water columns. *Microcystis* will be able to migrate towards the surface if the turbulent mixing of the water column is less than the upward migration rate of *Microcystis* (Huisman et al. 1999a). Dense surface blooms absorb a high amount of light (Ibelings 1996) that will further decrease light intensities for sinking phytoplankton (Huisman et al. 2004). Sinking phytoplankton species depend on vertical mixing of the water column for access to light in light-limited waters (Huisman et al. 2002). Wind speeds of greater than 3 m s$^{-1}$ are needed to break up surface blooms (Webster and Hutchinson 1994; Visser et al. 2005) and would also circulate sinking phytoplankton species up into the photic zone, thus negating the advantage of buoyancy regulating species (Huisman et al. 2002, 2004). After mixing, *Microcystis* is able to return to the surface.

Positive buoyancy of *Microcystis* near the surface, however, may result in exposure to very high light intensities that can be damaging to photosynthetic machinery. High light is a stressor to many photosynthetic organisms. Phytoplankton, in general, are
low-light adapted. *Microcystis*, on the other hand, is relatively high-light adapted compared to other phytoplankton. *Microcystis* has a high light-saturation point (I_k), and wide ranges of I_k have been reported for this species [135-323 (Ganf 1975); 253 ± 82 (Köhler 1992); 357-487 μmol m$^{-2}$ s$^{-1}$ (Wu and Song 2008)]. Diatoms and green algae normally have an I_k of less than 100 μmol m$^{-2}$ s$^{-1}$ (Kirk 1994). Further, *Microcystis* has a relatively high amount of photo-protective carotenoids, which are involved in non-photochemical quenching, compared to green algae and diatoms (Paerl et al. 1983; Ibelings et al. 1994). *Microcystis* also increases production of superoxide dismutase (SOD) enzymes when grown under higher-intensity light (Canini et al. 2001).

Carotenoids and SOD aid in protection from photooxidation by absorbing free radicals and oxide anions (Gotz et al. 1999; Scandalios 1993), which are produced by photosynthesis in high intensity light (Hopkins 1999). Despite these adaptations, *Microcystis* photosynthesis physiology may be damaged at the surface of calm waters where it is exposed to the extremely high light intensity of full sunlight, which exceeds 2000 μmol m$^{-2}$ s$^{-1}$.

Light is exponentially attenuated with depth in lakes and greater turbidity increases the rate of attenuation (Kirk 1994). Photosynthetic efficiency, measured here as the quantum yield of photosystem II (PSII) electron transport (Φ_{et}), generally increases with decreasing light intensity (Schreiber et al. 1994). Φ_{et} is proportional to carbon fixation at a given light level (Genty et al. 1989), and decreases in Φ_{et} indicate either damage to PSII or post PSII electron transport, or photo-protective down-regulation of electron transport (Krause 1988). Thus, phytoplankton cells at lower light intensities have greater efficiency than those in higher light. High turbidity, due to a high
concentration of suspended sediments that absorb and reflect light, may mitigate high-light stress in algae. Phytoplankton in Lake Erie’s western basin had a greater photosynthetic efficiency than the central and eastern basins because of higher turbidity in the west (Marwood et al. 2000). River-generated sediment plumes increased Lake Michigan phytoplankton primary production (Johengen et al. 2008). Others studies have shown that mixing provides phytoplankton relief from high-light intensities by circulating phytoplankton vertically, thereby lowering the average light exposure (Brookes et al. 2003; Ibelings et al. 1994). However, the interaction between turbidity and mixing at various depths of the water column is poorly understood.

In addition to affecting the photosynthetic efficiency of phytoplankton, turbidity may also influence the production of photosynthetic pigments and proteins. Low light induces an increase of phycobilins in cyanobacteria relative to chlorophyll a (Raps et al. 1985; Post 1986) and increases the number of photosynthetic units per cell (Raps et al. 1983). Excess light reduces total chlorophyll (Post 1986; Ibelings et al. 1994) and phycobilins (Post 1986; Bhandari and Sharma 2006) and increases protective carotenoids (Paerl et al. 1983; Bhandari and Sharma 2006). Light also affects the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). Rubisco is the enzyme that catalyzes the carboxylation of ribulose-1,5-bisphosphate with carbon dioxide during the first step of the Calvin cycle. Rubisco is highly abundant in photosynthetic cells and its activity decreases at low light (Hopkins 1999).

Another widely used measurement of general cellular stress is level of heat shock proteins (Hsps). Hsps are ubiquitous in both prokaryotes and eukaryotes and function as chaperones to protect proteins from unfolding or from forming an improper conformation
or facilitate repair of degradation of damaged proteins (Schlesinger 1990). Certain small Hsps (15-30 kDa; sHsps) are associated with the chloroplasts of higher plants and algae (Kloppstech et al. 1985; Preczewski et al. 2000; Heckathorn et al. 2002), and also associate with phycobiliproteins of cyanobacteria (Nakamoto and Honma 2006). Production of sHsps is increased in response to stress to protect PSII and light harvesting structures (Preczewski et al. 2000; Heckathorn et al. 2002; Nakamoto and Honma 2006).

The combination of being highly competitive for light and reduced light stress in highly turbid waters may explain why *Microcystis* is able to reach high biomasses in western Lake Erie and other highly turbid lakes. I hypothesized that *Microcystis* will experience less light stress in turbid waters. Therefore, I expected that the photosynthetic efficiency of phytoplankton will increase with depth and turbidity because of the decreased light intensities, and that strong mixing of the water may provide surface phytoplankton protection from the high-light intensities by reducing the length of time exposed to the high-light intensity of the sun. A laboratory experiment was performed to isolate effects that often covary in lakes; *i.e.* turbidity and nutrient concentration.

Additionally, I hypothesized that *Microcystis* collected from western Lake Erie in turbid waters will be able to adjust photosynthetic pigment and protein content, thus, chlorophyll *a* and phycocyanin content will be greater while carotenoids and rubsico will be less in turbid water than *Microcystis* in clear water. Further, I hypothesize that sHsps will be greatest in the most photo-inhibited samples.

Methods

Limnological Measurements
Collections and measurements were made aboard the Lake Erie Center boat at six sites along an approximately 80 km route in western Lake Erie and in Maumee Bay (Fig. 2-1) during the summer of 2008. At each sampling site, temperature, dissolved oxygen, and chlorophyll (chl) a fluorescence were recorded using a YSI #6600 (Yellow Springs Instruments) multi-probe at two-meter intervals from surface to bottom. The multi-probe was calibrated before each sampling trip. Wind speed and direction were measured (Kestrel #1000). The water column was classified as “strongly mixed” if wind speeds exceeded 3 m s\(^{-1}\) (Webster and Hutchinson 1994; Visser et al. 2005). This classification was supported by correlations of wind speed with vertical profiles of chl a, temperature, and dissolved oxygen that indicated that the water column was uniformly mixed above 3 m s\(^{-1}\). Wind speeds below 3 m s\(^{-1}\) allow Microcystis to escape the turbulent motion of the water column (Webster and Hutchinson 1994; Huisman et al. 1999b) and were classified in my study as “weakly mixed.” This was associated with stratification of chlorophyll profiles and presence of surface scums. Underwater profiles of photosynthetically active radiation (PAR, Li-Cor # LI-188B) were recorded and used to calculate the light extinction coefficient (\(K_{\text{PAR}}\)), which was used as an index of turbidity. Microcystis biomass was estimated by colonies retained in quantitative plankton tows (Chaffin et al. 2008). All collections and measurements were recorded between 10:00 am to 3:00 pm on full sun days.

For laboratory measurements of photosynthesis, Microcystis was collected from the entire water column from five sites in western Lake Erie, using a 64 μm mesh plankton net on six dates between July 24 and September 25, 2008 (Fig. 2-1). An additional site (MB20) was sampled for the in situ photosynthetic efficiency study, but
Microcystis at this site was not abundant enough to provide physiological measurements. Microcystis colonies retained in the net were concentrated and stored in dark polyethylene bottles during transportation back to the laboratory. Depending on sample location, two to six hours passed between collection on the lake and laboratory analysis. Upon arriving at the laboratory, the Microcystis samples were added to 1L imhoff cones and diluted to 1,000 ml with tap water. This allowed the Microcystis colonies to separate from the sinking diatoms and green algae via floatation (Chaffin et al. 2008). After 30 minutes, the settled phytoplankton consisting mainly of diatoms was drawn off through the bottom of the cone and discarded. The sample was then diluted again to 1,000 ml with tap water and process repeated. At this time, Microcystis was sucked off the surface for light-response curves and to determine the ratio of variable-to-maximum fluorescence. After light-response curves were complete, Microcystis colonies were drawn out of the bottom of the cone and concentrated on a 35 μm mesh, transferred to 1.5 ml tubes, and stored at -80 °C until further analysis. Samples were also checked for the presence of other cyanobacteria by microscopy. Anabaena was very sparse relative to Microcystis colonies on July 24 and August 6, and Aphanizomenon was not seen in samples.

Photosynthetic Efficiency

To determine the effects of turbidity and mixing on the in situ photosynthetic efficiency of Microcystis present in the lake, the quantum yield of photosystem II (PSII) electron transport (Φet) was recorded for surface and 1 m for all sites, and 3 m and 5 m for the deeper sites 8M, 7M, GR1, and 4P, respectively. Water was collected using a von-dorn bottle, transferred to dark polyethylene bottles, and immediately filtered
through Whatman GF/C filters or Fisher Brand G4 filters (1.2 µm pore sizes) (Marwood et al. 2000). This larger pore size allowed water to pass through the filter more quickly than using GF/F filter, giving a more accurate measurement of in situ conditions. Approximately 20 to 50 ml of water was used per filter. Filtering and measuring of Φ_{et} took place in the boat’s cabin to avoid direct sun light. The Φ_{et} of algae was determined within 60 seconds from collection using an OS1-FL Opti-Sciences modulated fluorometer. Briefly, steady-state fluorescence of these light-adapted samples (F_{s’}) was read with a low-intensity (<0.1 µmol m⁻² s⁻¹) far-red light. Maximum fluorescence of the light-adapted sample (F_{m’}) was recorded following a high-intensity (> 5,000 µmol m⁻² s⁻¹) saturating white-light pulse with a duration of 0.8 seconds. Φ_{et} is calculated as follows (Genty et al. 1989):

Equation 1. Φ_{et} = (F_{m’} - F_{s’}) / F_{m’}

Water was also collected from these depths to determine phycocyanin concentration, which is used to gauge the amount of Microcystis present for each Φ_{et} measurement (see method below).

In order to determine if damage occurred to PSII, light-response curves and the ratio of variable to maximum fluorescence (F_v/F_m) were determined on Microcystis collected from the lake on the same dates as the in situ sampling. After Microcystis was separated from other phytoplankton, a small amount of colonies was filtered onto a GF/C or G4 filter. The filters were kept moist with lake water to prevent desiccation. Photosynthetic light-response were generated using a Pulse Amplitude Modulation (PAM) fluorometer measuring Φ_{et} (equation 1) at nine light intensities from 20 to 1640 µmol m⁻² s⁻¹, at two minute intervals. F_v/F_m was determined on separate samples which
had been dark adapted for 30 minutes. F_v/F_m is calculated as follows (Schreiber et al. 1994);

Equation 2: $F_v/F_m = (F_m - F_o)/F_m$

where F_m is the maximum fluorescence of dark-adapted samples and F_o is the minimum fluorescence of dark-adapted samples. Light-response and F_v/F_m was measured using a Walz fluorometer (model PAM 101/103) and light pulse provided by a Schott flash lamp (model KL1500) as in Heckathorn et al. (2002).

Pigment Concentration

For the *in situ* photosynthetic-efficiency measurement, it was not possible to separate *Microcystis* from other phytoplankton species; therefore, in order to determine if *Microcystis* was present in samples of the *in situ* Φ_{et} study, water from each sample was brought back to the laboratory to determine the concentration of phycocyanin (PC), the accessory light-harvesting pigment of *Microcystis*. Water was stored in polyethylene bottles and stored on ice while transported back to the laboratory. Between 20 ml and 300 ml (depending on amount of sediments and plankton) were filtered through GF/F (0.45 um) filters and stored on silica gel at -20° C (within six hours of collection). The following day, silica gel was replaced with fresh gel and stored at -80° C until pigment content was determined. PC was extracted in 0.1 M phosphate buffer pH 6.8 (Furuki et al. 2003; Sampath-Wiley and Neefus. 2007). Filters were placed in plastic tubes with 5 ml of buffer and cells were broken by sonication (Bransonic #1510) for 15 minutes. Samples were then filled to 10 ml, then incubated at 4° C for 60 minutes. Samples were then centrifuged for 10 minutes at 3,800 rpm. PC fluorescence was recorded in a 10-AU
Turner Design fluorometer with P/N 103-80 filters. PC was quantified using a standard curve of C-PC standards.

Photosynthetic pigments were extracted from *Microcystis* separated in the imhoff cones to determine if *Microcystis* is able to adjust pigment content over a range of turbidity. Chlorophyll (chl) a and carotenoids were extracted from approximately 0.2 g of fresh weight tissue in 100% dimethylsulphoxide (DMSO). Tissue was added to 5 ml DMSO, then heated to 70°C for 45 minutes. One ml was taken from the sample and centrifuged at 21,000 g for 10 minutes. An absorption spectrum (400 – 700 nm at 1 nm intervals) was determined using the UV-1650 PC Shimadzu spectrophotometer and concentrations of chl a and total carotenoids were calculated from the spectra using equations shown in Table 2-1 (Wellburn 1994). Negative values calculated for chl b for all samples indicate that samples did not contain green algae. PC was extracted from approximately 0.05 g of fresh tissue by sonication as above. Pigment content was then corrected for dry weight determined by drying tissue until a constant weight at 70°C. Dry weight was constant after 24 hours.

Protein Content

To determine the effects turbidity had on rubisco and sHsps, *Microcystis* was ground to a powder in liquid nitrogen using a mortar and pestle, then transfered to a protein extraction buffer containing 0.1 M Tris buffer (pH = 8.0), SDS detergent, glycerol, bromophenol-blue, sucrose, protease inhibitors, a phenolic inhibitor, and reductants (Mishra et al. 2008). Samples were then centrifuged at 15,000 g for 10 minutes at 4 °C. Supernatant containing soluble proteins was collected and total protein content was determined using the method of Peterson (1977), and quantified using a
standard curve of Bovine Serum Albumin. Samples in extraction buffer were kept at -80° C until further analyses.

To prepare protein for gel separation and quantification of rubisco and sHsp, proteins were precipitated in 10x volume acetone for 60 minutes at -20° C, centrifuged at 15,000 g at 4° C, then resuspended overnight at 4° C in a sample buffer containing 1% SDS, 100 mM Tris buffer (pH = 6.8), 10% glycerol, 0.1% bromophenol-blue, and 0.4% β-mercaptoethanol. Protein samples were boiled for 4 minutes to denature protein then centrifuged at 21,000 g for 30 seconds to remove debris. Then proteins were separated in 12.5% SDS-PAGE, using 30 µg of protein in each well. For rubisco, gels were stained using Coomassie blue R-250. After de-staining, the gel was scanned and the relative content of rubisco large subunit band (52 kDa) was quantified by color densitometry. For sHsp, proteins were transferred to nitro-cellulose membranes by electroblotting, and sHsp were detected using protein specific antibodies (Heckathorn et al. 2002). Also, Microcystis grown in culture was heat-shocked at 40°C for 45 minutes to induce expression of sHsp and used as a positive control. A heat-shocked tomato plant was also used as a positive control.

Laboratory Experiment

A 2x2x2x2 factorial experiment was used to test the effects of nutrient concentration (low and high nutrients), turbidity (low and high), mixing (mixed or non-mixing), and sample depth (surface and at depth) on photosynthetic efficiency and pigments. All eight treatments combination (nutrient x turbidity x mixing) were randomized between trials. Experiment was replicated by three independent trials, with each treatment combination in each trial. Experimental tanks were constructed out of
61x76x90 cm (228 L) polyethylene (PE) bins. Bins were divided into six 61x9x90 cm (36.5 L) chambers using black sheets of Acrylonitrile-Butadiene-Styrene (ABS) board with PE foam inserted along the edges of the ABS board to fill the space created by the expanding walls upon adding water (Fig. 2-2). Experiments were conducted in a greenhouse and exposed to natural sunlight (up to 1,500 µmol m\(^{-2}\) s\(^{-1}\)) at ambient temperature (25 – 28 °C).

Mixing of the chamber was achieved using powerhead pumps (Aquagardens #601), so that the intake hose was placed at the bottom of the chamber and outflow just beneath the surface (Fig. 2-2). Sieved Lake Erie sediments (400 µm) were added to create turbidity. High turbidity was achieved by adding 0.55 ml L\(^{-1}\) sediments (~30 NTU) and 0.02 ml L\(^{-1}\) for low turbidity (~1 NTU). High nutrient level was 3.0 mg L\(^{-1}\) nitrogen (N) and 0.15 mg L\(^{-1}\) P, and low level was 0.6 mg L\(^{-1}\) N and 0.03 mg L\(^{-1}\) P. The N:P was 45 in both levels and all other nutrient concentration were the same in each level. All other nutrients were half concentration of the WC media (Guillard and Lorenzen 1972).

Twiss et al. (2005) enriched Lake Erie water with micro-nutrients to a final concentration similar to WC growth media and observed no additional phytoplankton growth. Equal amounts of *Chlamydomonas* and *Microcystis* were used in this experiment, based on content of chl \(a\). *Chlamydomonas* and *Microcystis* were added so that they each had a initial chl \(a\) of 2.5 µg L\(^{-1}\), making the total initial concentration 5.0 µg L\(^{-1}\).

Chlamydomonas and *Microcystis* that were intended for the experiment were grown in separate liquid cultures with the nutrient concentration of the low treatment level for two weeks before used in the experiment to insure that internal phosphorus storage did not take place.
Once treatments were set up and phytoplankton added, 96 hours were allowed for growth. This duration was decided upon following an initial trial ran for 168 hours using twice as much initial algae, which resulted in light levels that were too similar between the high and low turbidity treatments. Following the 96 hours, samples were collected at the surface and at a depth of 70 cm. At 70 cm, light levels in the low-turbidity treatment were 20% of surface light. In the high-turbidity treatment, light levels at 70 cm were < 0.5% of the surface irradiance. At the end of the incubation period, phytoplankton (100 ml) was filtered onto GF/F filters and Φ_{et} was measured within 60 seconds after collection. Separate samples were dark-adapted for 30 minutes and F_v/F_m was determined. Φ_{et} and F_v/F_m were determined in triplicate (three samples from each treatment of each trial) using an OS1-FL Opti-Sciences modulated fluorometer. Additional samples of algae for the determination of chl a and total carotenoids concentration were filtered and stored on silica gel at -80 °C. Pigments were extracted in DMSO and calculated with published equations (Table 2-1). Chambers 1 and 6 were not analyzed because the white outside wall resulted in higher light intensity than chambers 2 through 5, which had black walls. Light levels in the tanks were recorded after all samples were collected. Photosynthetic measurements and light levels were recorded between 12:00 pm and 2:00 pm on sunny days.

Data Analysis

In situ Φ_{et} data were analyzed for samples that had PC greater than 0.5 µg L$^{-1}$ (n = 78). A two-factor ANCOVA [depth (0 m, 1 m, pooled 3 m and 5 m) and mixing (strongly mixed or weakly mixed)] was performed using PROC REG of the statistical software SAS (v. 9.1) using K_{PAR} as a covariate and dummy variables were used for the
depth and mixing effects. Test for parallel slopes showed that these slopes where parallel to each other ($F_{(2,68)} = 3.14, F^* = 0.315; p = 0.7309$).

Repeated measure ANOVA was done for light-response curves with light intensity as the repeated variable and with site and mixing as fixed effects. Compound symmetry was assumed because unstructured and spatial power failed to meet requirements. To test for the effect that turbidity had on Φ_et within light intensities that approximate *Microcystis*’ light saturation (I_k) (261 µmol m$^{-2}$ s$^{-1}$), 2x I_k (522 µmol m$^{-2}$ s$^{-1}$) and 4x I_k (about half full sunlight; 1044 µmol m$^{-2}$ s$^{-1}$), ANCOVAs were used with K_{PAR} as covariate and dummy variables were used for the mixing effects. Tests for parallel slopes were then performed for all light intensities. Because many of the slopes between mixing and calm dates were not parallel, regressions were performed on each treatment separately. Linear regressions were used for weakly mixed dates, while non-linear regressions were used for strongly mixed dates and the maximum Φ_et (Φ_et_{max}) value and half-saturation coefficient (K_m) for Φ_et_{max} at each light intensity were calculated in Sigma Plot. PROC MIXED of SAS was used for repeated measures, while PROC REG was used for ANCOVAs and regressions.

ANCOVA tests were done to test for the effects of turbidity and site on the pigment and protein content of *Microcystis*. K_{PAR} was used as the covariate. Because ANCOVA assumes all treatments (the five sites) have a similar distribution on the covariate, and scatter plots of data suggest that this may not be the case, a single factor ANOVA (Quinn and Keough 2002) test was done on the centered K_{PAR} values by site. This showed that there was no significant difference among sites ($p = 0.30$) and, thus appropriate for the ANCOVA. Dummy variables were used for the five sites.
Differences among sites were tested for with a reduced model that excluded dummy variables. This showed that site had no significant effect on pigment content (see results); therefore regressions by K_{PAR} were done to see the effect of turbidity on pigment content. PROC REG of SAS was used for ANCOVAs and regressions, while PROC ANOVA was used for ANOVA.

Four-way ANOVA was performed to test for the effect of mixing (mixed or calm), turbidity (high or low), nutrients (high or low), and sample depth (surface and at depth) on $\Phi_{e\text{t}}$, F_v/F_m, and pigment composition. Tukey test was performed for multiple comparisons. PROC GLM of SAS was used.

Results

Photosynthetic Efficiency

In situ photosynthetic efficiency was greatest in higher turbidity and at depth (Fig. 2-3). $\Phi_{e\text{t}}$ increased with turbidity ($F_{(1,71)} = 3.98; F* = 156.6; p < 0.0001$) and with depth ($F_{(2,71)} = 3.13; F* = 15.87; p < 0.0001$) (Fig. 2-3). Mixing did not affect $\Phi_{e\text{t}}$ ($F_{(1,71)} = 3.98; F* = 0.0828; p = 0.7754$). For surface samples, mixing increased $\Phi_{e\text{t}}$ at higher K_{PAR} values, in contrast to 3 and 5 m where mixing decreased $\Phi_{e\text{t}}$ at higher K_{PAR} (Fig. 2-3). The regression lines for mixing and calm at one meter were identical and values were intermediate between those from the surface and 3 or 5 m depth (Fig. 2-3). There was no interaction between factors ($F_{(2,71)} = 3.13; F* = 0.750; p = 0.476$).

Light-response curves of *Microcystis* showed the typical response of any photosynthetic organism of PSII $\Phi_{e\text{t}}$ with increasing light intensities. The light-response curves also show that *Microcystis* becomes damaged on calm dates. Across all light
intensities, Φ_{et} was greater on vertically strongly mixed days than weakly mixed days ($p = 0.0335$; Fig. 2-4a). F_v/F_m was also greater on strongly mixed days (t-test, $p = 0.0021$; Fig. 2-4b). For every light-response curve, F'_m increased with increasing light intensity. F'_m was more or less stable over all light intensities for *Microcystis* collected from weakly mixed water, while F'_m decreased with light intensity for strongly mixed dates, indicating greater non-photochemical quenching. Collection location did not affect the light-response curve ($p = 0.9743$). To analyze the effect turbidity had on photosynthetic efficiency at I_k, $2x I_k$, and $4x I_k$, and F_v/F_m, ANCOVA’s were performed within each light intensity using K_{PAR} as the covariate. For these light intensities, the ANCOVA slopes for weakly and strongly mixed conditions were not parallel (Table 2-2). Because of non-parallel slopes, separate regressions were performed to analyze the effect of turbidity on Φ_{et}. Under weakly mixed conditions, Φ_{et} was unaffected by turbidity (a non-significant slope) (Table 2-2; Fig. 2-5). For strongly mixed conditions, non-linear regressions were used because of the hyperbolic function, and the maximum $\Phi_{et} (\Phi_{et max})$ value and half-saturation coefficient (K_m) for $\Phi_{et max}$ at each light intensity were calculated (Table 2-2; Figs. 2-5,6). At low light levels, K_m was very low and increased at greater light intensities (Fig. 2-6). For example, at I_k (261 μmol m$^{-2}$ s$^{-1}$), K_m was 0.91, and at $4x I_k$ (1044 μmol m$^{-2}$ s$^{-1}$), K_m was equal to 4.66. Slopes for F_v/F_m were parallel between strong and weak mixing, and non-significant when regressed against K_{PAR} (Table 2-2).

Pigments

Chlorophyll (chl) a and phycocyanin (PC), the light-harvesting pigments in *Microcystis*, had higher content in turbid water as compared to less turbid water. Reduced ANCOVA models excluding site effect variables were not significantly
different from full models that included the site effects (Table 2-3); therefore, site alone does not have an effect on pigment content. Chl a content of Microcystis increased over the sampling season from 4.84 ± 0.20 mg g⁻¹ (dry weight) (mean ± SE) on August 6 to 6.71 ± 0.44 on September 1. Further, the difference between the minimum (4.35 mg g⁻¹) and maximum (7.90 mg g⁻¹) values nearly doubled over the sampling period. When pigment content was regressed vs. KPAR, Chl a content was found to increase linearly with turbidity (Table 2-3; Fig. 2-7a). Total carotenoids content also increased with turbidity; however, more importantly, the total carotenoids/chl a ratio decreased with increasing KPAR (Table 2-3; Fig. 2-7b). PC content of Microcystis also increased with turbidity (Table 2-3; Fig. 2-7c), but to a much greater extent than chl a. PC was 20.24 ± 2.52 mg g⁻¹ August 6 and PC more than doubled to 48.35 ± 6.22 mg g⁻¹ on August 21. Further, there was nearly a six-fold increase between the minimum (10.83 mg g⁻¹) and maximum (62.33 mg g⁻¹) values. The PC/chl a ratio increased significantly with increasing KPAR (Table 2-3; Fig. 2-7d).

Protein Content

Total proteins separated by SDS-PAGE are shown in figure 2-8. Relative density of rubisco large subunit (52 kDa) was not affected by turbidity, but rather it increased with increasing average PAR (Table 2-3; Fig. 2-9). Small Hsp were only detected from samples collected on August 21 and were found at all sites in same quantity.

Laboratory Experiment

The laboratory photosynthetic efficiency experiment gave similar results as the in situ study. Φet ranged from 0.334 to 0.568 (Fig. 2-10a), and was significantly affected by the depth*mixing interaction (F* = 38.80; p < 0.001) and turbidity (F* = 26.49; p <
Nutrients did not have a significant effect on Φ_{et} ($F^* = 0.2238; p = 0.2238$). Turbidity increased Φ_{et} for each treatment combination of mixing and depth. Φ_{et} was statistically (Tukey test, $p < 0.05$) greater at depth than surface for the calm treatment among both turbidity levels. Within the mixed treatment, Φ_{et} was greater at depth than at the surface, but this difference was not statistically significant (Tukey test, $p > 0.05$).

The ratio of variable to maximum fluorescence (F_v/F_m) ranged from 0.567 to 0.604, and was only significantly affected by turbidity ($F^* = 15.65; p = 0.0004$). F_v/F_m was greatest in the high turbidity treatment (Fig. 2-10b). F_v/F_m was greater at 70 cm, but this was not significant ($F^* = 3.21; p = 0.08$). Neither mixing, nutrients, nor any interactions significantly affected F_v/F_m (Table 2-4).

Only total carotenoids/ chl a was significantly affected ($p = 0.0007$) by turbidity and was greater in the low turbidity treatment (Fig. 2-11). Total carotenoids/ chl a was not affected by any other factors or interactions (Table 2-4).

Discussion

Most research on *Microcystis* bloom-development is focused on nutrient effects. This study of photosynthetic efficiency and pigment content of *Microcystis* provides insights on how turbidity and vertical mixing can decrease high light stress. The *in situ* Φ_{et} lake study (Fig. 2-3) and laboratory experiments (Fig. 2-10a) showed that Φ_{et} increased with both increasing turbidity and depth. Mixing added an interesting effect to Φ_{et}. The lack of mixing allowed phytoplankton to remain at a constant light level, where it either became photo-inhibited if at the surface exposed to full sunlight, or became adapted to low light if it were sitting at a deeper depth in turbid water. The average light
exposure would have been very high for surface *Microcystis*, while average light was very low at depth. Mixing would transport surface algae downward providing relief from high-intensities light, while upward-mixing exposes algae that were adapted to low light levels at depth to high light intensities near the surface. The difference between the photosynthetic efficiency of phytoplankton collected at the surface and at depth under mixing conditions indicates that phytoplankton were able to recover/photo-inhibit between upward/downward transportation. In lakes, turbidity and nutrient concentration co-vary. Nutrient concentration did not affect Φ_{et} in the laboratory experiment. Very low nutrient concentration would most certainly decrease Φ_{et} (Stehfest et al. 2005), but nutrients in the low treatment were still high enough to prevent decreases in Φ_{et}. This indicates that the photo-inhibition observed in the lake in clear water were not due to low nutrients, but from lack of protective suspended sediments.

Microcystis becomes damaged on weakly mixed dates as evidence of lower values of Φ_{et} across the light-response curve and lower F_v/F_m (Fig. 2-4). Further, the stable F'_m of the light-response curve of the weakly mixed samples indicates less photo-protection of PSII via non-photochemical quenching (Schofield et al. 1998). *Microcystis* on weakly mixed dates floats near the surface where it is exposed to high light intensities for extended lengths of time that results in damage to the photosynthetic machinery and induction of photo-protective mechanisms. Damage to PSII was not repaired during transportation back to laboratory, which was 4 to 6 hours from collection time to time of analysis. Marwood et al. (2000) exposed Lake Erie phytoplankton to similar light intensities as surface light for 30 minutes and saw complete recovery of F_v/F_m following a two-hour recovery period. *Microcystis* collected from western Lake Erie in weakly
mixed water would have been exposed to full sunlight for several hours before I sampled. Köhler (1992) suggested that it takes *Microcystis* two days to adjust to high light intensities. On the other hand, strong mixing circulates *Microcystis* through out the water column which decreases exposure to high light intensities, preventing damage to the photosynthetic machinery, but *Microcystis* growth stops in mixed waters (Reynolds et al. 1984; Köhler 1992) and the competitive edge is shifted towards sinking phytoplankton (Huisman et al. 2004).

Microcystis itself can bring about photo-inhibitory conditions that result in damage, because surface blooms can increase the lake surface temperatures by 5 °C through non-photochemical quenching (Ibelings et al. 2003). High light intensities and high temperatures act synergistically together to damage cyanobacteria photosynthetic machinery (Ibelings 1996). However, the addition of 5 °C would still have been in the tolerable temperature range for *Microcystis* (lake surface temperature < 25 °C, Fig. 2-12) (Ibelings 1996); likewise, sHsp,s were not detected in photo-inhibited *Microcystis*. Therefore, damage seen in this study must have been a result of high light intensities rather than heat or a combination of the two.

Turbidity offered no protection for *Microcystis* on weakly mixed dates. F_v/F_m and Φ_{et} at I_k, 2x I_k and 4x I_k were not affected by water column turbidity in which the *Microcystis* was collected when the water column was weakly mixed. *Microcystis* floats on top of the water on extremely calm dates, therefore on top of any suspended sediment, which would offer protection. During strong mixing, however, *Microcystis*’ photosynthetic efficiency benefited from increased turbidity because photosynthetic efficiency at high light intensities was greater with higher turbidity (Fig. 2-6). This
indicates that turbidity has a larger role in photo-protection at greater light intensities, such as those seen near the surface. However, turbidity increased photosynthetic efficiency in the in situ study, even at the surface of weakly mixed days (Fig. 2-3). This may suggest that there are additional intra-cellular protective mechanisms present in situ that are not showing up in the laboratory light-response curves.

Damage was seen in Microcystis collected from the lake; however, very little damage was seen in the laboratory experiment (Fig. 2-10b). In the laboratory experiment, the slight decreases F_v/F_m indicate that the large decreases in Φ_{et} were due to photo-protective down-regulation of electron transport through non-photochemical quenching rather than damage to PSII. While the large decreases in F_v/F_m of Microcystis collected from the lake indicate that the decreases in Φ_{et} were due to damage to PSII. This could due to differences in light levels. In the lake, Microcystis would be exposed to full sunlight that exceeded 2,000 μmol m$^{-2}$ s$^{-1}$ on the lake, while the maximum light intensity of the laboratory experiment was around 1,500 μmol m$^{-2}$ s$^{-1}$. This suggests that Microcystis becomes light damaged at intensities between 1,500 and 2,000 μmol m$^{-2}$ s$^{-1}$.

Carotenoids have a several function acting as light-harvesting pigments and also are photo-protective molecules that absorb free radicals and are involved in non-photochemical quenching (Gotz et al. 1999; Bhandari and Sharma 2006). The total carotenoids/ chl a ratio was highest in less turbid water for both Microcystis collected from the lake and in the laboratory experiment (Figs. 2-7b; 2-11). Paerl et al. (1983) observed a steady increase of total carotenoids/ chl a of Microcystis over a summer. I found that Microcystis' carotenoids/ chl a decreased throughout the summer of 2008. This is because Microcystis first appeared in clear water, which resulted in the need for
more of the photo-protective pigments. Then, as the lake became more turbid, the carotenoids/ chl a ratio dropped. The increase in total carotenoids during my sampling is most likely a function of increasing turbidity to aid in light harvest that suggests they are having more of a role in light harvest than photo-protection in turbid water. If carotenoids role was solely photo-protective, then it would be expected that the high total carotenoids/ chl a seen on August 6 and 12 in clear water would have been maintained as the lake became turbid.

Buoyancy gives Microcystis an advantage in weakly mixed waters for competition of light (Huisman et al. 2004; Jöhnk et al. 2008). However, my research indicates that this ecological advantage comes at a physiological price, because Microcystis collected on weakly mixed dates had more damage to photosynthetic machinery than did Microcystis collected on strongly mixed dates. In situ photosynthetic efficiency and carotenoids/ chl a data suggests that turbidity did alleviate this stress but could not compensate for damage due to very high light intensities. The ideal situation for Microcystis would be to regulate buoyancy to maintain an ideal position in the water column through out the day, preventing photo-inhibition and accessing nutrients while maintaining a net photosynthesis and a surface scum (Kromkamp and Walsby 1990; Visser et al. 1997). This may not be the case in western Lake Erie, because of the very large size of Microcystis colonies, which often exceed 2 cm in length (personal observation). Large Microcystis colonies are more prone to photo-inhibition because of increased buoyancy (Brookes et al. 2003). Further, Microcystis is unable to accumulate carbohydrate needed to become negatively buoyant at very high light intensities (Visser et al. 1997). The highest light intensity of the light-response curve I studied was 1680
µmol m² s⁻¹ (84% of surface light), and samples collected on weakly mixed dates had an efficiency of 0.0014, while samples from mixed dates had an efficiency of 0.014 at the highest light intensity (Fig 2-4a). This indicates that Microcystis at the surface on calm dates has very low efficiency in the high intensity as compared to strongly mixed days. Large colonies of western Lake Erie Microcystis would become damaged when at the surface, resulting in the loss of the ability to produce carbohydrate needed to become negatively buoyant, thus the colonies become trapped on the surface. For that reason, there is an eco-physiological trade-off between being highly competitive for light under low-light in weakly mixed conditions and being highly prone to photosynthetic damage.

Damage that occurs at the surface would explain why Microcystis appears to increase in biomass at the surface throughout a calm day. Microcystis will float to the surface where it becomes damaged in the high intensity sunlight and unable to become negatively buoyant. Colonies will continually float upwards throughout the day, becoming damaged. Therefore Microcystis accumulates at the surface throughout the day. I have observed that Microcystis biomass continues to increase over time despite very low Φet. This suggests that Microcystis must be recovering during the night, or that Microcystis on the underside of the surface scum is protected and remains healthy.

Microcystis had the highest photosynthetic efficiency in waters that were turbid and strongly mixed. The bloom of 2008 first appeared in relatively clear water (Fig. 2-12). During the clear water phase, low biovolumes of Microcystis were recorded. Microcystis photosynthetic efficiency was low and total carotenoids/chl a was high during this time. This would indicate stressful conditions and explain (in part) low biomass. Large biovolumes of Microcystis were seen after August 21 once the lake
became highly turbid. Photosynthetic efficiency was highest and carotenoids decreased during this time. The turbid waters resulted in increased Φ_{et}, which is proportional to carbon fixation (Genty et al. 1989). Highly turbid water provides a more favorable growth condition for Microcystis than clearer water. Thus, if nutrient loading is held constant but suspended sediment loading is reduced, Microcystis biomass would be reduced because of higher light stress and no competitive advantage.

Chl a content of Microcystis nearly doubled with increasing turbidity (Fig. 2-7a). Most photosynthetic organisms increase the relative amount of chl when grown under low light conditions to catch more photons (Kirk 1994; Hopkins 1999). Cyanobacteria increase chl a content by producing more light-harvesting complex with constant chl a per unit, rather than increasing chl a per complex (Raps et al. 1983). Phycocyanin (PC) is the major light-harvesting pigment in the antennae of cyanobacteria (Adir 2005) and its content increased nearly six-fold as the lake transitioned from very clear to highly turbid (Fig. 2-7c). Rubisco was unaffected by K_{PAR}, but did significantly increase with average PAR (Table 2-3). This would be expected because Rubisco activity decreases with less light (Hopkins 1999) and the calculation of average PAR factors in lake depth. Average PAR can be quite high in turbid, shallow water. Although significant, these regressions of pigment vs. K_{PAR} were not very tight (Table 2-3). This may be due to the high to low turbidity gradient from the mouth of the Maumee River into the lake. When transitioned from low to high light, chl a and PC content of cyanobacteria reached a steady state after 250 hours (Post 1986), while pigments reached a steady state after only 50-60 hours when transitioned from high to low light (Post 1986). Small Hsp were only detected from samples collected on Aug. 21. Small Hsp have been shown to protect PSII and
phycobilins during stressful conditions (Heckathorn et al. 2002; Nakamoto and Honma 2006). It is likely that sHsp were associated with PC rather than PSII, because \(\Phi_{et} \) values were high (non photo-inhibited) and PC content was greatest on this day.

These field findings of dramatic shifts in pigment content of *Microcystis* would have implications for remote sensing of blooms. Researchers rely on satellites to detect concentrations of chl \(a \) or PC to map the spatial coverage of these blooms (Vincent et al. 2004; Simis et al. 2007; Wynne et al. 2008). Further, concentrations of these pigments in lake water are used to gauge the intensity of these blooms. Flawed conclusions might be made when comparing PC or chl \(a \) concentration of clear water to highly turbid water. For example, if a researcher observes a lake wide PC of 5 \(\mu \text{g L}^{-1} \), this may lead to the conclusion that *Microcystis* biomass is constant throughout the lake. However, if there is a strong turbidity gradient from bay to offshore (which is usually the case in western Lake Erie), the *Microcystis* biomass of the bay would most likely be much less than that of the offshore. The low biomass in the turbid bay would need to produce more pigments in order to capture light. The scenario would be similar when comparing pigments between data collected on two different dates that had different turbidity. Chl \(a \) would give remote sensing researchers a more accurate estimate of algal biomass rather than PC, because chl \(a \) content of *Microcystis* only double over the range of turbidity while PC content increased nearly six-fold.

In conclusion, surface *Microcystis* had the lowest photosynthetic efficiencies in calm water as a result of damage due to long-term exposure to full sunlight. Increased turbidity did not mitigate damage but did increase *in situ* photosynthetic efficiency. Less damage was observed when the water column was vertically mixed. However,
Microcystis requires stable water to allow it to competitively exclude other phytoplankton through the formation of surface scums that shade diatoms and green algae as they settle out of the photic zone. Thus, there is an eco-physiological trade-off in calm waters between being highly competitive for light but also being more susceptible to damage to photosynthetic machinery.

Literature Cited

Tables

Table 2-1. Equations used to calculate chlorophyll a and b and total carotenoids in DMSO from filtered lake water or *Microcystis* (Wellburn 1994). X is L for filtered water for pigment per volume or g for *Microcystis* pigment per mass. v is the volume (ml) of DMSO used for extraction.

<table>
<thead>
<tr>
<th>Pigment</th>
<th>Unit</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a</td>
<td>$\mu g \times^{-1}$</td>
<td>$[(12.47 \times A_{666})-(3.62 \times A_{649})] \times v / X$</td>
</tr>
<tr>
<td>Chlorophyll b</td>
<td>$\mu g \times^{-1}$</td>
<td>$[(25.06 \times A_{649})-(6.5 \times A_{665})] \times v / X$</td>
</tr>
<tr>
<td>Total Carotenoids</td>
<td>$\mu g \times^{-1}$</td>
<td>${[(1000 \times A_{480})-(1.29 \times A_{665})-(53.78 \times A_{665})]/220} \times v / X$</td>
</tr>
</tbody>
</table>
Table 2-2. ANCOVA and regression table of *Microcystis* Φ_{et} at light saturation (I_k), 2x I_k, and 4x I_k and the light intensities used to represent these reading (μmol m⁻² s⁻¹ PAR). Because slopes are not parallel (α = 0.05; F_(1,25) = 4.26), regressions were used to test the effect turbidity had on Φ_{et}. *P* values, slope and r² are from linear or non-linear regressions of K_{PAR} vs. Φ_{et} in a given light intensity. The half-saturation coefficient (K_m) and maximum Φ_{et} (Φ_{et max}) for the K_{PAR}-Φ_{et} curve are given for non-linear function.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Light</th>
<th>ANCOVA Slope Test</th>
<th>Mixing</th>
<th>p value</th>
<th>Function</th>
<th>r<sup>2</sup></th>
<th>K<sub>m</sub></th>
<th>Φ<sub>et max</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>v</sub>/F<sub>m</sub></td>
<td>Dark</td>
<td>Calm</td>
<td>0.05</td>
<td>Parallel</td>
<td>Linear</td>
<td>0.0275</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Adapted</td>
<td>Mixed</td>
<td>0.1121</td>
<td>Linear</td>
<td>0.1967</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>I<sub>k</sub></td>
<td>261</td>
<td>Calm</td>
<td>9.45</td>
<td>Not Parallel</td>
<td>Linear</td>
<td>0.1063</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>0.0006</td>
<td>Non-linear</td>
<td>0.6361</td>
<td>0.9126</td>
<td>0.2999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x I<sub>k</sub></td>
<td>521</td>
<td>Calm</td>
<td>12.98</td>
<td>Not Parallel</td>
<td>Linear</td>
<td>0.0942</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td><.0001</td>
<td>Non-linear</td>
<td>0.7413</td>
<td>1.4979</td>
<td>0.2417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x I<sub>k</sub></td>
<td>1044</td>
<td>Calm</td>
<td>11.3</td>
<td>Not Parallel</td>
<td>Linear</td>
<td>0.0068</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>0.0003</td>
<td>Non-linear</td>
<td>0.6757</td>
<td>4.6623</td>
<td>0.1808</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3. *Microcystis* pigment and Rubisco ANOVA tables. A). ANCOVA results for error DF and error SS for the reduced and full models that contain site effect. This indicates that site had no significant ($\alpha = 0.05; F_{(4,14)} = 3.36$) on pigment content. B). Regression table for pigments content as a function of K_{PAR}. Rubisco* regressed against average PAR.

<table>
<thead>
<tr>
<th>Pigment</th>
<th>DF<sub>Full</sub></th>
<th>SS<sub>Full</sub></th>
<th>DF<sub>Red</sub></th>
<th>SS<sub>Red</sub></th>
<th>F*</th>
<th>p value</th>
<th>p value</th>
<th>Slope</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl a</td>
<td>14</td>
<td>9.678</td>
<td>18</td>
<td>10.744</td>
<td>0.385</td>
<td>0.816</td>
<td>0.0003</td>
<td>0.523</td>
<td>0.5336</td>
</tr>
<tr>
<td>Carot./ Chl a</td>
<td>14</td>
<td>0.009</td>
<td>18</td>
<td>0.012</td>
<td>1.423</td>
<td>0.278</td>
<td>0.0025</td>
<td>-0.014</td>
<td>0.4059</td>
</tr>
<tr>
<td>PC</td>
<td>14</td>
<td>1071.747</td>
<td>18</td>
<td>1744.130</td>
<td>2.196</td>
<td>0.122</td>
<td>0.0003</td>
<td>6.568</td>
<td>0.5260</td>
</tr>
<tr>
<td>PC/ Chl a</td>
<td>14</td>
<td>25.953</td>
<td>18</td>
<td>38.373</td>
<td>1.675</td>
<td>0.211</td>
<td>0.0096</td>
<td>0.632</td>
<td>0.3181</td>
</tr>
<tr>
<td>Rubisco</td>
<td>14</td>
<td>224.885</td>
<td>18</td>
<td>611.598</td>
<td>6.02</td>
<td>0.005</td>
<td>0.2035</td>
<td>NS</td>
<td>0.0882</td>
</tr>
<tr>
<td>Rubisco*</td>
<td>14</td>
<td>247.879</td>
<td>18</td>
<td>312.009</td>
<td>0.91</td>
<td>0.487</td>
<td>0.0002</td>
<td>0.0187</td>
<td>0.5348</td>
</tr>
</tbody>
</table>
Table 2-4. *P* values for the quantum yield of PSII electron transport (*Φ*$_{et}$), the ratio of variable to maximum fluorescence (F$_{v}$/F$_{m}$), and total carotenoids/ chl *a*. Bold values indicate significance at $\alpha = 0.05$ after bonferroni adjustment.

<table>
<thead>
<tr>
<th>Source</th>
<th>$Φ_{et}$</th>
<th>F${v}$/F${m}$</th>
<th>Carot./ Chl a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (D)</td>
<td><.0001</td>
<td>0.0825</td>
<td>0.5864</td>
</tr>
<tr>
<td>Turbidity (T)</td>
<td><.0001</td>
<td>0.0004</td>
<td>0.0007</td>
</tr>
<tr>
<td>Mixing (M)</td>
<td>0.0838</td>
<td>0.1790</td>
<td>0.4071</td>
</tr>
<tr>
<td>Nutrients (N)</td>
<td>0.2238</td>
<td>0.1333</td>
<td>0.9778</td>
</tr>
<tr>
<td>D*T</td>
<td>0.7584</td>
<td>0.9958</td>
<td>0.9726</td>
</tr>
<tr>
<td>D*M</td>
<td><.0001</td>
<td>0.6323</td>
<td>0.4182</td>
</tr>
<tr>
<td>D*N</td>
<td>0.9042</td>
<td>0.4484</td>
<td>0.5149</td>
</tr>
<tr>
<td>T*M</td>
<td>0.6557</td>
<td>0.3282</td>
<td>0.4427</td>
</tr>
<tr>
<td>T*N</td>
<td>0.6878</td>
<td>0.7415</td>
<td>0.4922</td>
</tr>
<tr>
<td>M*N</td>
<td>0.8796</td>
<td>0.9279</td>
<td>0.7746</td>
</tr>
<tr>
<td>DTM</td>
<td>0.5749</td>
<td>0.8522</td>
<td>0.9700</td>
</tr>
<tr>
<td>DTN</td>
<td>0.7698</td>
<td>0.3519</td>
<td>0.7031</td>
</tr>
<tr>
<td>DMN</td>
<td>0.8263</td>
<td>0.6211</td>
<td>0.8353</td>
</tr>
<tr>
<td>TMN</td>
<td>0.7569</td>
<td>0.8066</td>
<td>0.9543</td>
</tr>
<tr>
<td>DTM*N</td>
<td>0.6971</td>
<td>0.0679</td>
<td>0.4182</td>
</tr>
</tbody>
</table>
Figure 2-1. Six sample sites in western Lake Erie
Figure 2-2. Diagram of experimental chambers of the 2x2x2x2 PSII efficiency experiment. Arrows depict the flow of circulating water of mixed chambers.
Figure 2-3. *In situ* quantum yield of photosystem II electron transport for samples with a phycocyanin concentration of greater than 0.5 μg L\(^{-1}\) from western Lake Erie measured at the surface (bold black lines; circles), 1 meter (gray lines; triangles) and 3 and 5 meters (thin black lines; squares) as a function of turbidity, as K\(_{\text{PAR}}\). Filled symbols and solid lines are weakly mixed dates. Open symbols and dashed lines are strong mixing dates.
Figure 2-4. Light-response curves (A) and F_v/F_m (B) of *Microcystis* collected in western Lake Erie on weakly mixed dates (filled symbols; solid lines) and strongly mixed dates (open symbols; dashed lines). Values are mean ± SE of $n = 15$ for both mixing levels.
Figure 2-5. Photosynthetic efficiency of *Microcystis* from western Lake Erie at a given light intensity of the light-response curve as a function of K_{PAR}. Weakly mixed dates – filled circles and solid lines; Strongly mixed dates – open circles and dashed lines. A). F_v/F_m (dark adapted); B). 261 µmol m$^{-2}$s$^{-1}$ (light saturation; I_k); C). 522 µmol m$^{-2}$s$^{-1}$ (2x I_k); D). 1044 µmol m$^{-2}$s$^{-1}$ (4x I_k; half full sunlight).
Figure 2-6. K_{PAR} half-saturation coefficient (K_m) of the light-response curves for *Microcystis* collected on strongly mixed days increases at higher light intensity, which indicates turbidity has a larger effect on Φ_{et} at high light levels.
Figure 2-7. Pigment content of *Microcystis* collected from western Lake Erie as a function of K_{PAR}. A). Chlorophyll (chl) a; B). Phycocyanin; C). Total Carotenoids/ Chl a; D). Phycocyanin / Chl a.
Figure 2-8. Total protein profile of *Microcystis* that had been separated from other phytoplankton collected in western Lake Erie from five sample sites and on four dates during 2008. Rubisco large sub-unit (52 kDa) is marked with an arrow.
Figure 2-9. Rubisco content of *Microcystis* increases with average PAR over the water column.
Figure 2-10. *In situ* quantum yield of photosystem II electron transport (Φ_{et}) (A) and the ratio of variable to maximum fluorescence (F_v/F_m) of Lake Erie phytoplankton grown in laboratory conditions under natural sunlight intensities, high or low turbidity, and mixing or calm water.
Figure 2-11. Total carotenoids/ Chl a of Lake Erie phytoplankton grown in the laboratory experiment in low or high turbidity.
Figure 2-12. Turbidity (dashed line; filled circles), temperature (dotted line; open triangles) and Microcystis biovolume (bold line; open squares) in western Lake Erie during 2008. Arrows on represent dates sample that were strongly mixed. Dashed line with no symbols corresponds to 0.16, the value that indicated light limitation (Alpine and Cloern 1988). Values are the mean (± SE) of six sites.
Chapter Three

Measurements of *Microcystis* cellular health in western Lake Erie during the 2008 bloom indicate the high turbidity and nutrients support rapid growth.

Abstract

Measurements of *Microcystis* biovolume collected from 2002 through 2008 show that blooms are most dense in waters just outside of the Maumee Bay. The waters adjacent to the bay are generally high in nutrients and suspended sediments. Light-limitation may occur in these waters due to the combination of high turbidity and increasing depth, providing a potential ecological advantage for buoyant phytoplankton species, such as *Microcystis* over non-buoyant species. *Microcystis* was collected from western Lake Erie during the 2008 bloom for measurements of total protein content and nutrient content to determine physiological health. The results of lake sampling indicates that *Microcystis* cellular health is greater in the highly turbid, light-limiting conditions adjacent to Maumee Bay waters compared to clearer offshore waters. Nutrient content of *Microcystis* suggest that *Microcystis* was nitrogen replete and phosphorus limited, but not extremely deficient. Further, in a laboratory experiment, *Microcystis* growth was greatest in the high nutrient, high turbidity treatment. Other combinations of nutrients and turbidity resulted in less *Microcystis* growth. The combination of high nutrients and high turbidity of the waters adjacent of the Maumee Bay provide *Microcystis* not only an
ecological advantage in light competition, but also, offers condition that favors rapid growth and cellular health.

Introduction

Microcystis blooms were a relatively small proportion of the Lake Erie phytoplankton community prior to the 1990s (Makarewicz 1993). Since the mid 1990s, total phytoplankton biomass has increased and *Microcystis* blooms have returned to western Lake Erie, despite an increase in annual nutrient loading (Conroy et al. 2005; Brittian et al. 2000). *Microcystis* blooms in western Lake Erie are a concern because of their ability to produce a hepatotoxin (Microcystin) in concentrations that frequently surpasses the World Health Organization’s safety limit of 1 μg L\(^{-1}\) in western Lake Erie (Brittian et al. 2000; Rinta-Kanto et al. 2005; Dyble et al. 2008).

Western Lake Erie is an ideal location for *Microcystis* growth because of high nutrients and high turbidity (Moorhead et al. 2008). Total phosphorus concentration of Maumee Bay is usually greater than 0.100 mg L\(^{-1}\) and concentration decreases with distance into the lake (Moorhead et al. 2008). The potential for bloom formation increases with increasing TP and plateaus at about 80% once TP reaches 0.100 mg L\(^{-1}\) (Downing et al. 2001). High concentrations of suspended sediments may bring about phytoplankton light-limitation (Alpine and Cloern 1988) favoring buoyant *Microcystis* in light-limited calm waters (Huisman et al. 2004). The Maumee River is a source of nutrients and suspended sediments to Maumee Bay and western Lake Erie because of its highly agricultural watershed (Baker and Richards 2002; Richards et al. 2008). Shallow lakes allow sediments and nutrients to be resuspended from the lake bottom by wind-
driven currents (Søndergaard et al. 2003). Thus, due to the shallow depth of Maumee Bay and western Lake Erie, internal loads of sediments may also generate turbidity.

Field sampling of previous *Microcystis* blooms in western Lake Erie lead to observations that suggest that the spatial extent of a bloom follows the spatial pattern of the suspended sediment plume. Conditions in the sediment plume include high nutrients that fertilize *Microcystis* and high turbidity that protects *Microcystis* from high light and light-limit the water column (see Chapter 2), while waters outside the sediment plume have lower nutrient concentrations and less turbidity. Based on nutrient and light conditions, I hypothesized that *Microcystis* in the sediment plume would have a better cellular health compared to *Microcystis* in waters outside of the sediment plume.

Cyanobacteria are poor competitors for nutrients compared to green algae and diatoms (Tilman et al. 1986). Thus, *Microcystis* should be out-competed for nutrients in nutrient-limited lakes. However, *Microcystis* is able to store excess phosphorus in waters that have total phosphorus concentrations greater than 0.220 mg L$^{-1}$ (Baldia et al. 2007), to sustain a constant rate of cell growth for five (Tsukada et al. 2006) to nine days (Nalewajko and Murphy 2001). Likewise, eukaryotic algae are also capable of luxury uptake in nutrient rich waters and phosphorus can make up 11% of total dry weight (Ducobu et al. 1998). If nitrogen is depleted in waters, cyanobacteria are able to break down phycobiliproteins and allocate nitrogen to other compounds (Post 2005); however, *Microcystis* can only sustain growth for one day following nitrogen deprivation (Baldia et al. 2007). In the case of western Lake Erie, I hypothesized that *Microcystis* accumulates phosphorus in the nutrient rich bay before currents carry the cells into the relatively nutrient-poor offshore water. This hypothesis would be supported if *Microcystis* is found
to have a similar internal phosphorus content in the nearshore vs. offshore despite large
differences in ambient dissolved phosphorus concentrations. I further hypothesized that
Microcystis’ inability to store nitrogen would result in lower internal nitrogen content in
the relatively low total nitrogen offshore region.

Plankton samples were collected from six sites in western Lake Erie as a part of
an on-going monitoring program established during 2002 at the Lake Erie Center
(University of Toledo, Toledo, Ohio, USA). *Microcystis* colonies retained in those
samples were measured to determine if there was a spatial pattern to *Microcystis* blooms
in western Lake Erie. During the summer of 2008, I sampled of the annual *Microcystis*
bloom to measure physiological parameters (*i.e.* nutrient content, and total protein
content) that would help explain any spatial pattern observed in the seven years of
sampling. If any spatial pattern of *Microcystis* density was observed, my hypothesis was
that *Microcystis* collected during 2008 would have higher cellular health in regions that
Microcystis is most abundant. The null hypothesis would be that cellular health
parameters would not show differences among sites.

Further, this chapter presents a factorial *Microcystis* growth laboratory experiment
with four treatments and two levels in each treatment. Turbidity and nutrients (high and
low) were used to study the effect of suspended sediments and nutrient concentrations
typical of the bay and offshore. Mixing (mixed or calm) and sample depth (surface or at
depth) were used to study the effect of water column turbulence on the buoyancy
capabilities of *Microcystis*. It was hypothesized that *Microcystis* biomass would be
greatest at the surface in the high nutrient and high turbidity treatment, while *Microcystis*
biomass would be lowest in the clear, low nutrients, and mixed treatment.
Methods

Spatial Pattern of *Microcystis*

To determine if there was a spatial pattern of *Microcystis*, plankton tow samples were analyzed that were collected from 2002 to 2008 from six sites in western Lake Erie (Fig. 3-1). *Microcystis* and other plankton were collected using a 112 \(\mu \text{m} \) mesh plankton net over the entire water column. Plankton retained in the net was preserved in buffered-sugar formalin. *Microcystis* was separated from other phytoplankton using Imhoff cones and biovolume of *Microcystis* was used as an estimate of biomass (as in Chaffin et al. 2008).

Health Status of *Microcystis*

For physiological measurements to be made in the laboratory, *Microcystis* was collected over the entire water column from five sites in western Lake Erie using a 64 \(\mu \text{m} \) mesh plankton net on four dates between August 6 and September 1 2008 (Fig. 3-1). During these dates, *Microcystis* biomass steadily increased. An additional site (MB20) was sampled for nutrients, but *Microcystis* was not abundant enough there to collect for physiological measurements. Water from all six sites was collected at 1 m to determine nutrient concentration of lake water. Water was filtered through a 0.45 \(\mu \text{m} \) Millipore filter for soluble nutrients (nitrate, nitrite, ammonium, soluble reactive phosphorus) while unfiltered water was used for total phosphorus and total kjeldahl nitrogen analyses. Filtered and unfiltered samples were sent to the National Center for Water Quality Research at Heidelberg University for analysis. *Microcystis* colonies retained in the net were concentrated and stored in dark polyethylene bottles on ice during transportation back to the laboratory. Upon arrival at the laboratory, the *Microcystis* samples were
separated from other phytoplankton using Imhoff cones and stored at -80 °C as in chapter two of this thesis.

Total protein content is an indicator of cellular health. Protein of *Microcystis* was extracted by grinding approximately 1 g of fresh weight tissue to a powder in liquid nitrogen using mortar and pestle, then transferring to a protein extraction buffer containing 0.1 M Tris buffer (pH = 8.0), SDS detergent, glycerol, bromophenol-blue, sucrose, protease inhibitors, a phenolic inhibitor, and reductants (Mishra et al. 2008). Samples were then centrifuged at 15,000 g for 10 minutes at 4 ° C. Supernatant containing soluble proteins was collected and total protein content was determined using the method of Peterson (1977), and quantified using a standard curve of Bovine Serum Albumin and corrected for dry mass.

Carbon (C) and nitrogen (N) content was determined on 3.1- 3.7 mg of dried *Microcystis* tissue. Tissue was placed in foil and percentage of C and N were measured by gas-chromatography following combustion (HCNO/S analyzer Perkin-Elmer 2400 series II). Acetanilide was used as a standard, with errors of -0.27% and 0.01 % for C and N respectively. Phosphorus (P) and other macronutrients and micronutrients content were determined by ICP-OES on 100 to 200 mg of dried tissue. Nutrient deficiencies were indicated by atomic ratios shown in Table 3-1 (Healey and Hendzel 1975).

Laboratory Experiment

A 2x2x2x2 factorial experiment was used to test the effects of nutrient concentration [low (0.6 mg L^{-1} N, 0.03 mg L^{-1} P) and high (3.0 mg L^{-1} N, 0.15 mg L^{-1} P)], turbidity [low (~ 1 NTU) and high (~30 NTU)], mixing (vertically mixed or non-mixing) and sample depth (surface and at depth) on *Microcystis* growth. Mixing of the chamber
was achieved using powerhead pumps (Aquagardens #601) so that the intake hose was
placed at the bottom of the chamber and outflow just beneath the surface (Fig. 3-2).
Sieved Lake Erie sediments (400 µm) were added to create turbidity. All other nutrients
were half concentration of the WC media (Guillard and Lorenzen 1972). Twiss et al.
(2005) enriched Lake Erie water with micronutrients to a final concentration similar of
the WC growth media and observed no additional phytoplankton growth.

Chlamydomonas (a common unicellular green alga) and *Microcystis* were grown
separately in WC liquid medium (Guillard and Lorenzen 1972) under illumination of ~50
µmol m⁻² s⁻¹ on 12:12 hour light/dark cycles. *Chlamydomonas* was aerated while
Microcystis was not. *Chlamydomonas* and *Microcystis* were initially collected from Lake
Erie. Equal amounts of *Chlamydomonas* and *Microcystis* were used in this experiment,
based on content of chl *a*. *Chlamydomonas* and *Microcystis* were added so that they each
had an initial level chlorophyll (*chl*) *a* of 2.5 µg L⁻¹, making the total initial concentration
5.0 µg L⁻¹. Phytoplankton intended for experiment was grown in liquid culture with the
nutrient concentration that of the low treatment level for two weeks before use in the
experiment, to insure that internal phosphorus storage did not occur.

Once treatments were set up and phytoplankton added, 96 hours were allowed for
growth. Following the 96 hours, samples were collected at the surface and 70 cm. The 70
cm sample represents the 20% of surface light in the low turbidity level and < 0.5 % in
the highly turbid treatment. Phytoplankton (100 ml) was filtered onto GF/F filters and
stored on silica gel at -80 °C until pigment concentration was measured. Chl *a* was used
as a surrogate for total algal biomass, phycocyanin (PC) as an index of *Microcystis*
abundance, and chl b for green algae. Chl a and b were extracted in DMSO and PC extracted by sonication following methods in chapter two.

Data Analysis

Total protein and nutrient content were analyzed using repeated measures ANOVA with PROC MIXED of SAS with sample date as repeated variable and sample site as fixed effect. Tukey test was performed for difference among sites. A four-way ANOVA was performed for the laboratory experiment. PROC GLM of SAS was used and Tukey was used to compare differences between treatments.

Results

Spatial Pattern of Microcystis

Microcystis biovolume was highly temporally and spatially variable between 2002 and 2008 (Table 3-2). On the temporal scale, lowest biovolumes were recorded during 2002 and highest average biovolumes during 2008, while the greatest value was recorded during 2003 at 7M. Spatially, across all years, MB20 had the lowest biovolume, while 7M and 8M had the highest. 4P had more Microcystis biovolume than GR1, and 4P biovolumes are correlated with 7M.

Lake Nutrient Concentration

Total phosphorus (TP) ranged from 0.50 to 0.90 mg L$^{-1}$ and decreased with distance from the river (Fig. 3-3a,b). Soluble reactive phosphorus (SRP) concentrations were 13% to 33% of the TP concentration and show similar patterns over space and time as did TP. Nitrate (NO$_3$-N) was high during May through early July (lake mean about 2.0 mg L$^{-1}$), then was nearly depleted by the end of the sampling season and also showed the
same spatial pattern of decreasing with increasing distance from river mouth (Fig. 3-3c,d). Ammonium (NH$_4$-N) was more or less constant throughout the season (0.025 mg L$^{-1}$) and did not have a spatial pattern (Fig. 3-3c,d). The ratio of total N: total P (TN:TP) was around 35 (mass) during the first half of the season then dropped as NO$_3$ became depleted during August (Fig. 3-3e). TN:TP was similar at all sites (Fig. 3-3f).

Health Status of Microcystis

Total protein content (TPC) was used as a measure of cellular health. TPC was significantly affected by sample site ($F_{(4,12)} = 3.26; F^* = 5.01, p = 0.0131$) and sample date ($F_{(3,12)} = 3.49; F^* = 4.66, p = 0.0222$). *Microcystis* collected from 8M and 7M had significantly greater TPC than *Microcystis* from GR1 and 4P (Fig. 3-4). The bay site had mean protein content slightly less than the middle sites, but Tukey test indicated that MB18 was similar to all other sites (Fig. 3-4). The significant date effect can be attributed to the variation observed in the bay and two middle sites, and resulted in a general increase of TPC over the summer. There was while little variation in TPC in the offshore waters over the summer sampling.

Carbon (C) content of *Microcystis* ranged from 45.65% to 49.91% and nitrogen (N) ranged from 6.31% to 9.16%. Phosphorus (P) was more variable ranging from 0.52% to 1.25%. The atomic ratios of C to N (C:N) and C to P (C:P) were used indicate nutrient deficiencies. Sample date had a statistically significant effect on both C:N and C:P ($F_{(3,12)} = 3.49; F^* = 8.29, 3.15$, respectively; $p = 0.0030, 0.0494$, respectively), while sample location did not have an effect ($F_{(4,12)} = 3.26; F^* = 2.22, 0.88$, respectively; $p = 0.1285, 0.5033$, respectively). Figure 3-5 shows the plot of C:N vs. C:P. The thin dashed lines represent the boundary between no deficiency and moderate deficiency, while the
bold lines indicate the boundary between moderate and extreme deficiency. In terms of N, 19 of 20 samples were N-replete, only once did *Microcystis* have a slight moderate N-deficiency (August 12 at 8M). Moderate P-deficiency was measured in a majority of the *Microcystis* samples. Further, *Microcystis* collected from the middle sites (8M and 7M) had the lowest C:P on most sampling trip (Fig. 3-6).

Laboratory Experiment

Chl *a* in the laboratory experiments ranged from 15.58 to 33.22 µg L\(^{-1}\) (Table 3-3). Chl *a* was significantly affected by the three-way interaction of depth*mixing*nutrients (F* = 5.09; *p* = 0.0311) and by turbidity (F* = 4.88; *p* = 0.0344) (Table 3-4). PC ranged from 0.49 to 9.89 µg L\(^{-1}\) (Table 3-3) and was significantly affected by depth*mixing (F* = 41.23; *p* <.0001) and nutrients (F* = 4.61; *p* = 0.0395) (Table 3-4). The interaction between turbidity and nutrients was nearly statistically significant (F* = 3.99; *p* = 0.0543). Chl *b* varied little among treatments (Table 3-3) and no factors had significant effects (Table 3-4).

Mixing had the greatest effect on chl *a* and PC. At the surface of the calm treatment, chl *a* and PC was statistically greater than all other combinations of depth and mixing (Tukey test, *p* < 0.0001 for all pair-wise comparisons of surface*calm to other combinations). In the calm treatments, the concentrations of chl *a* and PC were much higher at the surface than at depth, as result of *Microcystis* concentrating at the surface (Table 3-3). Within the calm*surface treatment, chl *a* was greater in the high nutrient treatment (Tukey test, *p* = 0.0053). All other combinations of comparison (excluding calm*surface) were nearly identical (Tukey test, *p* > 0.89). In the mixing treatment, the surface and 70 cm sample had nearly identical concentrations of chl *a* and PC (Table 3-
3). The mixed treatments had much less PC and more chl b, and chl b was greater in the low turbidity treatment than the high turbidity treatment across turbidity levels of the mixed treatments (Table 3-3).

The interaction between turbidity and nutrients is evident within the calm treatment, at the surface (although not statistically significant when considering the mixed treatments and depth samples). At low turbidity, nutrients did not have an effect on either chl a or PC (Fig. 3-7). At high turbidity, concentrations of chl a and PC were greater in the high nutrient treatment (Fig. 3-7).

Discussion

Microcystis biomass was highly variable among the seven years of data collection (Table 3-2). *Microcystis* did show a distinct spatial pattern in western Lake Erie, with low biomass of *Microcystis* found in the bay, highest biomass at the middle sites and slightly less or similar biomass in the offshore (Table 3-2). This pattern can be explained by several observations. First, the region that is intermediate between Maumee Bay and the open waters of the western basin of Lake Erie (designated here as “Middle”), often has the lowest photic depth to lake depth ratio. In the Middle region, *Microcystis* would have an advantage in the competition for light over sinking phytoplankton (Huisman et al. 2004). The shallow bay would have a higher photic depth to lake depth ratio; also shallow waters are more likely to be mixed, which prevent *Microcystis* blooms (Huisman et al. 1999). However, *Microcystis* might actually have very rapid growth in the bay sites, but the short retention time of the bay may be simply pushing *Microcystis* to the offshore before high biomasses can be accumulated.
Total protein content (TPC) was greatest at the two middle sites (Fig. 3-4), which suggests that *Microcystis* from these sites have a higher overall cellular health compared to offshore waters. The trend of higher TPC in the bay and middle waters can be explained by two factors. First, nutrient concentration is very high in the bay and adjacent waters and decreases with distance into the lake (Fig 3-3; Moorhead et al. 2008). High concentrations of soluble nutrients in the bay and middle region would result in healthier *Microcystis* and more growth. Secondly, *Microcystis* from turbid waters has less light stress compared to *Microcystis* in clear water (chapter 2). The combination of high nutrient and high turbidity in the bay and adjacent waters would have provided favorable conditions for *Microcystis* growth. There was also a general increasing of TPC, which resulted in the statistically significant date effect. *Microcystis* from the second half of sampling dates was collected when the water column was strongly mixed. In an effort to try to maintain position in the upper layer of the mixed water, *Microcystis* will produce more gas vacuoles as a response to lower average light intensities (Walsby 1994). When *Anabaena* was grown at low light, gas vacuoles proteins can make up nearly 10% of all cellular proteins (Oliver and Walsby 1984).

No N-deficiency was seen in *Microcystis* during 2008, despite the low TN:TP ratios. The NO$_3$ supply decreased nearly 50-fold throughout the summer, but NH$_4$ remained more or less stable and was above 0.025 mg L$^{-1}$ for the entire summer. This would suggest that NH$_4$ of 0.025 mg L$^{-1}$ would be adequate to support an intense *Microcystis* bloom. This would follow the observations of Jacoby et al. (2000) who reported that NH$_4$ of 0.007 mg L$^{-1}$ was able to support a *Microcystis* bloom in Steilacoom Lake (Washington, USA), while NO$_3$ had became depleted. *Microcystis* is not a nitrogen
fixer. Therefore, according to traditional TN:TP models, *Microcystis* should not be able to persist at low TN:TP because N-fixing cyanobacteria would out-compete non-N fixers (Smith 1983). During 2008, the NH$_4$ proportion was 2.4% to 4.7% of the TN. Thus, TN:TP ratios may not apply in lakes with adequate NH$_4$, or because a high propitiation of the TP might actually be stored in the algae.

Microcystis was generally moderately P-deficient (Fig. 3-5). However, *Microcystis* from the middle sites was less P-deficient than the offshore sites on each sample date (Fig. 3-6), although this was not statistically supported. Lake total phosphorus concentrations decreased with distance from the river mouth and increased from July to September (Fig. 3-3a,b). *Microcystis* is capable of luxury uptake when grown in phosphorus-rich waters (Baldia et al. 2007; Tsukada et al. 2006; Nalewajko and Murphy 2001). Because P was higher at the middle sites than the offshore, this did not support my hypothesis that phosphorus accumulated in the nearshore sustains *Microcystis* growth in the lower nutrient, offshore waters. *Microcystis* growth is linear with phosphorus concentrations up to 220 µg L$^{-1}$ (Baldia et al. 2007), which is greater than phosphorus concentrations of the bay. Therefore, *Microcystis* remains phosphorus limited in western Lake Erie and reduction in phosphorus loading would further increase the phosphorus deficiency and slow growth.

In the laboratory experiment, mixing of the chambers resulted in much less *Microcystis* and more green algae (Table 3-3). Highly turbid, mixed treatments had less chl a than did low turbidity, mixed treatments. This would indicate light limitation in the mixed and turbid treatments. In the high turbidity treatments, the lack of mixing allowed *Microcystis* to float to the surface access light and preventing light-limitation. These
findings agree with the modeling work of Huisman et al. (1999, 2004) who showed that buoyant phytoplankton will dominate calm waters, while mixed waters will result in less of the buoyant species and more of the sinking species. *Microcystis* growth is prevented in mixing waters (Reynolds et al. 1984).

Chl *a* and PC were greatest at the surface of the calm treatments. This would indicate a *Microcystis* surface bloom. Within these surface blooms, *Microcystis* was most abundant in the high turbidity and high nutrient treatments (Fig. 3-7). While other combinations of nutrients and turbidity resulted in lower *Microcystis* growth. This would suggest that turbidity and nutrients are equally important in determining the magnitude of a *Microcystis* surface bloom, because high nutrients alone did not increase *Microcystis*. The high turbidity in the calm treatments allowed *Microcystis* to float to the surface to access light, while the green algae would have remained light-limited. *Microcystis* is a poor competitor for nutrients, and therefore would be expected to be out-competed for limiting nutrients (Tilman et al. 1986). *Microcystis* compensates for this by being highly competitive for light in calm light-limited waters. In this experiment, *Microcystis* was able to use the nutrients in the high turbidity treatment because green algal growth was prevented.

In western Lake Erie, the combination of high nutrients and high turbidity allows *Microcystis* to reach great biomasses. *Microcystis* is most abundant at middle sites where the ratio of photic depth to lake depth is lowest. Here, buoyant *Microcystis* has an advantage in the competition for light when the water column is calm. The hypothesis that the Middle region is best-suited for *Microcystis* growth is supported by results indicating that *Microcystis* in the Middle region had greater total protein content and less
phosphorus deficiency than *Microcystis* in the offshore, and that high turbidity in the Middle region is photo-protective (Chapter 2). These measurements show that *Microcystis* at the middle sites are healthier than that of the offshore and explain why *Microcystis* is most dense in these regions of western Lake Erie.

Management efforts that seek to suppress *Microcystis* blooms could potentially take the approach of changing the conditions of the middle regions of western Lake Erie need to be more like that of the offshore, where light and nutrient stress is the greatest. Best-management land-use practices for agriculture in the Maumee River watershed can target the loading of suspended sediments and nutrients for terrestrial sources. These would include no-tillage and conservation tillage, buffer strips along ditches, and remediation of wetlands. Although these practices will be beneficial in the long term for reducing *Microcystis* blooms, there may be a lag-time before improvements are observed because there may be a high rate of internal loading of suspended sediments and nutrients from the lake sediments (Visser et al. 2005).

The bloom of 2008 started in clear water during late July (Chapter 2). TP concentrations in western Lake Erie were high in early July (Fig. 3-3), while the water column was still clear. *Microcystis* biomass increased with turbidity (Chapter 2) that also corresponded to an increase of TP (Fig. 3-3). Therefore, because *Microcystis* first appeared in clear water with high TP, then TP might be a better predictor to when a bloom will occur. The magnitude of the bloom might be best predicted based on the combination of turbidity and TP, because in the laboratory experiment, *Microcystis* biomass was greatest in the high turbidity and high nutrient treatment. Hence, if sediment loads are reduced, *Microcystis* may not be able to take advantage of the high
concentration of nutrients because sinking phytoplankton would have access to light in clear water and out-compete *Microcystis* for phosphorus.

Literature Cited

2004 blooms in western Lake Erie using quantitative real-time PCR.

Tables

Table 3-1. Criterion for algal nutrient deficiency based on atomic ratios (Healey and Hendzel 1975).

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Atomic Ratio</th>
<th>No Deficiency</th>
<th>Moderate Deficiency</th>
<th>Extreme Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>C:N</td>
<td>< 8.3</td>
<td>8.3-14.6</td>
<td>> 14.6</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>C:P</td>
<td>< 129</td>
<td>129-258</td>
<td>> 258</td>
</tr>
</tbody>
</table>
Table 3-2. Average and maximum values of *Microcystis* biovolume (ml m$^{-2}$) recorded at six sites in western Lake Erie from 2002-2008. Number of plankton samples collected from July 1 to October 15 is in parenthesis next to the mean. *“Too much Microcystis to collect” was recorded on data sheets for 8M during 2003.*

<table>
<thead>
<tr>
<th>Year</th>
<th>Site</th>
<th>MB20</th>
<th>MB18</th>
<th>8M</th>
<th>7M</th>
<th>GR1</th>
<th>4P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>1.5</td>
<td>10.7</td>
<td>16.6</td>
<td>28.6</td>
<td>6.3</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1.5</td>
<td>16.6</td>
<td>63.3</td>
<td>67.3</td>
<td>19.1</td>
<td>20.4</td>
</tr>
<tr>
<td>2003</td>
<td>Mean</td>
<td>20.4</td>
<td>0.0</td>
<td>58.7</td>
<td>218.8</td>
<td>53.8</td>
<td>185.4</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>20.4</td>
<td>0.0</td>
<td>173.5*</td>
<td>892.9</td>
<td>119.9</td>
<td>632.7</td>
</tr>
<tr>
<td>2004</td>
<td>Mean</td>
<td>10.4</td>
<td>35.2</td>
<td>177.9</td>
<td>126.5</td>
<td>49.5</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>23.0</td>
<td>58.7</td>
<td>332.1</td>
<td>311.2</td>
<td>105.9</td>
<td>74.0</td>
</tr>
<tr>
<td>2005</td>
<td>Mean</td>
<td>4.7</td>
<td>11.4</td>
<td>87.5</td>
<td>59.2</td>
<td>9.1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>10.2</td>
<td>25.5</td>
<td>324.0</td>
<td>188.8</td>
<td>21.7</td>
<td>20.4</td>
</tr>
<tr>
<td>2006</td>
<td>Mean</td>
<td>3.2</td>
<td>17.6</td>
<td>57.3</td>
<td>42.6</td>
<td>54.0</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>7.7</td>
<td>40.8</td>
<td>149.2</td>
<td>125.0</td>
<td>118.6</td>
<td>176.0</td>
</tr>
<tr>
<td>2007</td>
<td>Mean</td>
<td>12.6</td>
<td>38.1</td>
<td>99.0</td>
<td>17.9</td>
<td>26.4</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>51.8</td>
<td>135.2</td>
<td>267.9</td>
<td>42.1</td>
<td>89.3</td>
<td>16.6</td>
</tr>
<tr>
<td>2008</td>
<td>Mean</td>
<td>104.1</td>
<td>122.2</td>
<td>224.6</td>
<td>206.2</td>
<td>157.9</td>
<td>252.3</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>295.9</td>
<td>229.6</td>
<td>591.8</td>
<td>413.3</td>
<td>359.7</td>
<td>665.8</td>
</tr>
</tbody>
</table>
Table 3-3. Pigment concentration (μg L⁻¹) of the experiment. Values are mean (± SE) n=3.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Mixing</th>
<th>Turbidity</th>
<th>Nutrients</th>
<th>Chlorophyll a</th>
<th>Phycocyanin</th>
<th>Chlorophyll b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface No</td>
<td>High</td>
<td>High</td>
<td>33.22 (2.43)</td>
<td>9.89 (0.60)</td>
<td>3.73 (1.98)</td>
<td></td>
</tr>
<tr>
<td>Surface No</td>
<td>High</td>
<td>Low</td>
<td>23.46 (1.62)</td>
<td>4.55 (2.67)</td>
<td>4.10 (0.99)</td>
<td></td>
</tr>
<tr>
<td>Surface No</td>
<td>Low</td>
<td>High</td>
<td>27.81 (0.15)</td>
<td>5.97 (0.29)</td>
<td>3.08 (0.48)</td>
<td></td>
</tr>
<tr>
<td>Surface No</td>
<td>Low</td>
<td>Low</td>
<td>26.17 (3.63)</td>
<td>5.48 (1.03)</td>
<td>2.90 (0.70)</td>
<td></td>
</tr>
<tr>
<td>Surface Yes</td>
<td>High</td>
<td>High</td>
<td>15.42 (0.12)</td>
<td>1.47 (0.55)</td>
<td>3.68 (0.49)</td>
<td></td>
</tr>
<tr>
<td>Surface Yes</td>
<td>High</td>
<td>Low</td>
<td>15.56 (0.71)</td>
<td>1.04 (0.36)</td>
<td>3.61 (0.38)</td>
<td></td>
</tr>
<tr>
<td>Surface Yes</td>
<td>Low</td>
<td>High</td>
<td>17.76 (1.18)</td>
<td>1.19 (0.30)</td>
<td>3.87 (0.23)</td>
<td></td>
</tr>
<tr>
<td>Surface Yes</td>
<td>Low</td>
<td>Low</td>
<td>17.18 (0.68)</td>
<td>1.37 (0.40)</td>
<td>3.88 (0.34)</td>
<td></td>
</tr>
<tr>
<td>70 cm No</td>
<td>High</td>
<td>High</td>
<td>16.12 (0.76)</td>
<td>0.73 (0.19)</td>
<td>2.80 (1.29)</td>
<td></td>
</tr>
<tr>
<td>70 cm No</td>
<td>High</td>
<td>Low</td>
<td>16.97 (0.88)</td>
<td>0.41 (0.07)</td>
<td>3.13 (0.54)</td>
<td></td>
</tr>
<tr>
<td>70 cm No</td>
<td>Low</td>
<td>High</td>
<td>18.92 (0.96)</td>
<td>1.27 (0.61)</td>
<td>3.85 (0.72)</td>
<td></td>
</tr>
<tr>
<td>70 cm No</td>
<td>Low</td>
<td>Low</td>
<td>19.08 (0.77)</td>
<td>1.38 (0.56)</td>
<td>3.83 (0.71)</td>
<td></td>
</tr>
<tr>
<td>70 cm Yes</td>
<td>High</td>
<td>High</td>
<td>16.52 (0.46)</td>
<td>1.01 (0.37)</td>
<td>2.72 (0.93)</td>
<td></td>
</tr>
<tr>
<td>70 cm Yes</td>
<td>High</td>
<td>Low</td>
<td>15.58 (0.77)</td>
<td>0.49 (0.04)</td>
<td>2.56 (0.95)</td>
<td></td>
</tr>
<tr>
<td>70 cm Yes</td>
<td>Low</td>
<td>High</td>
<td>18.85 (0.99)</td>
<td>0.99 (0.15)</td>
<td>3.63 (0.33)</td>
<td></td>
</tr>
<tr>
<td>70 cm Yes</td>
<td>Low</td>
<td>Low</td>
<td>19.30 (1.33)</td>
<td>0.96 (0.10)</td>
<td>4.10 (0.82)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4. *P* values for pigment concentration. Bold values indicate significance at $\alpha = 0.05$.

<table>
<thead>
<tr>
<th>Source</th>
<th>Chl a</th>
<th>PC</th>
<th>Chl b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (D)</td>
<td><.0001</td>
<td><.0001</td>
<td>0.5174</td>
</tr>
<tr>
<td>Turbidity (T)</td>
<td>0.0344</td>
<td>0.7613</td>
<td>0.4137</td>
</tr>
<tr>
<td>Mixing (M)</td>
<td><.0001</td>
<td><.0001</td>
<td>0.8518</td>
</tr>
<tr>
<td>Nutrients (N)</td>
<td>0.0488</td>
<td>0.0395</td>
<td>0.8216</td>
</tr>
<tr>
<td>D*T</td>
<td>0.0885</td>
<td>0.1338</td>
<td>0.1125</td>
</tr>
<tr>
<td>D*M</td>
<td><.0001</td>
<td><.0001</td>
<td>0.6000</td>
</tr>
<tr>
<td>D*N</td>
<td>0.0324</td>
<td>0.1051</td>
<td>0.8853</td>
</tr>
<tr>
<td>T*M</td>
<td>0.1660</td>
<td>0.5369</td>
<td>0.3839</td>
</tr>
<tr>
<td>T*N</td>
<td>0.1525</td>
<td>0.0543</td>
<td>0.9606</td>
</tr>
<tr>
<td>M*N</td>
<td>0.0966</td>
<td>0.1089</td>
<td>0.9421</td>
</tr>
<tr>
<td>DTM</td>
<td>0.3237</td>
<td>0.2073</td>
<td>0.6380</td>
</tr>
<tr>
<td>DTN</td>
<td>0.2333</td>
<td>0.1644</td>
<td>0.8277</td>
</tr>
<tr>
<td>DMN</td>
<td>0.0311</td>
<td>0.0739</td>
<td>0.9375</td>
</tr>
<tr>
<td>TMN</td>
<td>0.2293</td>
<td>0.1988</td>
<td>0.6421</td>
</tr>
<tr>
<td>DTM*N</td>
<td>0.0568</td>
<td>0.1872</td>
<td>0.9160</td>
</tr>
</tbody>
</table>
Figure 3-1. Six sample sites in western Lake Erie
Figure 3-2. Diagram of experimental chambers of the 2x2x2x2 *Microcystis* growth experiment. Arrows depict the flow of circulating water of mixed chambers.
Figure 3-3. Phosphorus and nitrogen concentrations of western Lake Erie during 2008. A, C, and E are mean ± s.e for date from all sample sites. B, D, and F are sample site mean ± s.e for all sampling dates during 2008. Error bars of A and C are off-set for ease in viewing. A & B) Total Phosphorus (TP; filled circles, filled bars) and soluble reactive phosphorus (SRP; open circle, open bars). C & D) Nitrate (NO$_3$-N; filled squares, filled
bars) and Ammonium (NH$_4$-N; open triangles, open bars). Note NH$_4$-N values on D are x10. E & F) Total nitrogen: Total phosphorus ratio (by mass), dashed line represents 29, the value below which nitrogen-fixing species become favored (Smith 1983).
Figure 3-4. Higher total protein content (dry mass basis) of *Microcystis* collected from nearshore waters of western Lake Erie indicates greater cellular health than the offshore. Letters represent groups of significant difference based on Tukey test (α = 0.05). Sites are arranged with increasing distance from the Maumee River.
Figure 3-5. Nutrient content of *Microcystis* as atomic ratios of carbon to nitrogen and carbon to phosphorus. Bold line corresponds to the boundary of no deficiency and moderate deficiency and dotted lines the boundary of moderate and extreme deficiency. Vertical lines represent nitrogen and horizontal lines for phosphorus. Only one *Microcystis* sample was slightly nitrogen deficient, while phosphorus deficiency was seen frequently. Criterion for deficiency is given in Table 3-1.
Figure 3-6. Phosphorus deficiency in *Microcystis* in western Lake Erie.
Figure 3-7. Chlorophyll a (A) and phycocyanin (B) concentration at the surface of the calm treatment. At low turbidity, nutrient concentration did not have an effect, but high turbidity increased *Microcystis* growth.
Chapter Four
Conclusions

Buoyancy gives *Microcystis* an ecological advantage in calm turbid water because it is able to access light and shade sinking phytoplankton. However, this ecological advantage comes at a physiological price because *Microcystis* collected from calm water had more photosynthetic damage than *Microcystis* collected from mixed water. Thus, there is an eco-physiological trade-off for being highly competitive for light and photosynthetic damage. My field measurements suggest that sediment plumes, generated by rivers or lake bottom resuspension, mitigate photo-inhibition. Further, *Microcystis* also had a lower content of carotenoids in turbid water, which further supports that turbidity creates a favorable light environment. *Microcystis* was also able to adjust light harvesting pigments in turbid water.

Microcystis blooms of western Lake Erie are an annual occurrence. The spatial pattern of these blooms closely follows the extant of the sediment plume of the Maumee Bay and adjacent waters. This suggests that conditions within these plumes favor rapid *Microcystis* growth. Total protein content was highest in regions of the lake that are often in the sediment plume and indicates greater health in these turbid waters. Turbidity of the plume gives *Microcystis* a competitive edge over sinking phytoplankton and increases the photosynthetic efficiency. Also, nutrient concentrations of the sediment
plumes are very high. No nitrogen deficiency was observed in *Microcystis* while frequent phosphorus deficiencies were measured.

Goal of management should be to lessen the magnitude of *Microcystis* blooms. Efforts to reduce sediment loading into lakes would increase light stress for *Microcystis* and slow its growth. In the laboratory experiment, *Microcystis* growth was similar among nutrient concentrations at low turbidity- *Microcystis* only took advantage of high nutrients in high turbidity treatment. Further reducing sediment loading would concomitantly reduce nutrient loading and would increase the severity of phosphorus deficiency of *Microcystis*. Best-management land-use practices and lessening summer dredging of shipping channels could be tools used to reach this goal.
Experiment to Determine Photosynthetic Pigment Concentration

Introduction

There is no standard method for extraction of pigments from phytoplankton. For phycocyanin (PC), most methods rely on mechanical grinding with a mortar and pestle (Sampath-Wiley and Neefus 2007; Simis et al. 2007), sonication (Furuki et al. 2003; Patel et al. 2004; Downes and Hall. 1998), or freeze/thaw cycles (Simis et al. 2007) using either tris or phosphate buffer. For chlorophyll, the method of Lorenzen (1967) uses grinding in acetone and reading absorbance at 665 nm. Other methods use strong organic solvents such as dimethylsulphoxide (DMSO) (Wellburn 1994; Seely et al. 1972) or N-N dimethylformamide (DMF) (Speziale et al. 1984). After extraction, then absorbance spectra are read and chlorophyll concentration is calculated from equations that use several wavelengths, or chlorophyll fluorescence is read and concentration calculated using a standard curve. Absorbance allows for calculation of all chlorophylls and carotenoids from one extraction, while fluorescence only allows for calculation of one pigment at a time. Because of the ambiguities for phycocyanin extractions and potential differences between the chlorophyll quantification, I examined different methods to quantify phycocyanin and compared our laboratory’s method of chlorophyll
quantification which uses DMF and fluorescence (Speziale et al. 1984) to a method that uses DMSO and absorbance.

Phycocyanin

There is a wide variety of published methods for the extraction of PC from cyanobacteria and red algae. Most methods rely on freeze/thaw cycles, grinding with mortar and pestle, or sonication in Tris or Sodium phosphate buffers. Michael McKay of Bowling Green State University provided me with their lab protocol that uses sonication to break cells walls. However, there is uncertainty as to the duration needed to sonicate samples. One study (Furuki et al. 2003) stated that more PC is extracted with increased length of sonication, while another (Downes and Hall 1998) showed that PC is damaged by prolonged sonication. To address this, an experiment using cultured *Microcystis* was done using two buffers (0.05 M Tris pH 7.0 or 0.1 M Sodium phosphate pH 6.8) and two types of extraction (mortar and pestle or sonication of several lengths (1, 5, 10, 15, 20, and 40 minutes)) to determine the best protocol for extracting PC from my samples. *Microcystis* was grown in WC liquid medium (Guillard and Lorenzen 1972) under ~50 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) on 12:12 hour light/dark cycles in 2 L jars. One culture jar was selected for this experiment. The jar was capped and *Microcystis* mixed thoroughly by turning it over several times before each aliquot was taken. 100 ml were filtered onto 25 cm GF/F filters. This process would insure that all filters contained the same amount of *Microcystis* and therefore PC. Filters were then stored at -80° C as above. Half of the samples would be used for Tris buffer and the other half for phosphate. Each buffer x sonication length combination length was replicated with 3 separate filters. For grinding with mortar and pestle, 12 filters were ground in one of the two buffers, transferred to plastic screw-top
tubes, and filled to 10 ml with buffer and incubated at 4° C for 60 minutes. Samples where then centrifuged for 10 minutes at 3,800 rpm and PC fluorescence was recorded in a 10-AU Turner Design fluorometer with P/N 103-80 filters. For sonication, filters were placed in 5 ml of buffer in polystyrene screw-top tubes and sonicated for the length of time. After sonication, samples were then filled to 10 ml and incubated at 4° C for 60 minutes (Michael McKay, BGSU). Samples were then centrifuged for 10 minutes at 3,800 rpm and then PC fluorescence was recorded. Further, the absorbance spectrum was read for these samples to determine pureness of extract.

Grinding filtered sample by mortar and pestle gave higher fluorescence values than sonication (Fig. 5-1), but this was a result of the cloudiness of the solution. Therefore, grinding was eliminated as a choice for PC extraction. For sonication, Tris gave higher fluorescence readings (Fig. 5-2), but calculated concentration of PC was similar between the two types of buffer. PC fluorescence increased with sonication length up to 10 minutes and was similar at 15 and 20 minutes, and then fluorescence was less at 40 minutes (Fig. 5-2). Because fluorescence was constant between 10 and 20 minutes, 15 minutes was selected. The absorbance spectra for Tris had peaks at 619 nm (PC) and 665 nm (Chl α), whilst phosphate buffer only had the 619 nm peak (Fig. 5-3). This indicates that phosphate buffer had a high purity of PC than Tris. Both buffers contained carotenoids. The phosphate buffer was selected because of the PC purity and because the 10 mg ml⁻¹ C-PC standard was in a solution of sodium phosphate. Standard curve of known concentration vs. PC fluorescence was linear through the range of the machine.

Chlorophyll α
Because chl a is extracted in N-N dimethylformamide (DMF) as a part of an on-going lake monitoring program, I compared DMF to DMSO extractions (as above chapters; Wellburn 1994) for 60 samples. Same method of collecting, filtering, and storage of was used between the two extraction types. Filters were placed in polyethylene screw-top tubes with 4 ml of DMF and stored at -20° C overnight. The following day, samples were heated to 70° C for 15 minutes then filled to 10 ml (Speziale et al. 1984). Samples were then centrifuged at 2,000 rpm for 10 minutes (Speziale et al. 1984). Chl a fluorescence was read using the Turner Design fluorometer with P/N 10-037R. An acid adjustment was used with two drops of 2 N HCl and fluorescence read. Chl a was quantified using a standard curve.

Chl a extractions from 60 samples were compared by using a DMSO with absorbance and DMF with fluorescence measured. No difference was seen between the two methods for extracting chl a from phytoplankton on filters (Fig. 5-4). The two methods were highly correlated when concentrations measured are plotted vs. each other ($r^2 = 0.93$).

In this experiment, I determined the best method of extraction of phycocyanin from Microcystis collected from Lake Erie. This method relies on sonication that is less labor-intensive than mechanical grinding with mortar and pestle, also sonication is less time consuming as compared to freeze/thaw cycles. This method was used to extract PC from Microcystis taken from Lake Erie. For chl a, the two methods gave very similar results. I used the DMSO method because it allows for determination of several pigments from one extraction. The DMF method was an establish protocol as part of an
on-going monitoring method. Therefore, the similar between the two methods gives confidence that the chl \(a \) values obtained from DMSO are correct.

Phytoplankton Community of Western Lake Erie 2007-2008

The 2007 sampling season began in early July during a *Microcystis* bloom. Chl \(a \) and PC were 18.73 and 51.93 µg L\(^{-1}\) respectively at site 8M surface. *Microcystis* and other phytoplankton decreased throughout the summer. August and September had low chl a and low PC. A second *Microcystis* bloom was seen in October. Chl \(a \) and PC were 101.8 and 178.7 µg L\(^{-1}\) respectively at site 8M surface. The left side of Figure 5-5 gives chl \(a \) isopleths for sites 8M and MB20 during 2007. PC isopleths for sites 8M and MB20 are shown in Figure 5-6.

2008 sampling started with high chl \(a \) concentration on May 29 at sites MB20 (107.9 µg L\(^{-1}\)) and 7M (32.2 µg L\(^{-1}\)). Chl \(c \) to chl \(b \) ratios greater than 7.0 would indicate that this algal bloom was diatoms (*Aulacoseira* sp). By mid June, for all sites except MB20, chl \(a \) dropped to less than 12 µg L\(^{-1}\), and further dropped to values less 4.0 µg L\(^{-1}\) on June 24. Phycocyanin (PC) values were less than 0.1 µg L\(^{-1}\) through June. A second *Aulacoseira* bloom was seen on July 10 with highest chl \(a \) at 7M (47.7 µg L\(^{-1}\)). Sparse *Microcystis* was first collected in plankton tow on July 24, but PC was low ranging from 0.07 to 0.38 µg L\(^{-1}\). Diatoms were still most abundant taxon but chl \(a \) decreased to less than 10 µg L\(^{-1}\). *Microcystis* was present in the lake and it was concentrated at the surface on August 6 and 12. Greatest surface values of chl \(a \) and PC were 112.5 and 245.6 µg L\(^{-1}\), respectively, during these two dates. *Microcystis* biomass collected in plankton tows was very high on August 21 and remained high for the rest of sampling season, but strong
mixing of water column evenly distributed Microcystis. Strong mixing resulted in much lower concentrations of chl a and PC at the surface. Highest chl a and PC at the surface was 35.7 and 33.2 µg L$^{-1}$, respectively, during strong mixing. Calmness was restored September 25 and Microcystis concentrated on the surface. Highest chl a was 1100.9 µg L$^{-1}$ and PC was 418.2 µg L$^{-1}$ on the surface at 8M. The right half of Figure 5-5 show the chl a isopleths for sites 8M and MB20 for 2008. Phycocyanin isopleths for sites 8M and MB20 are shown in Figure 5-6 respectively.

Complete Methods for Laboratory Experiment

Chlamydomonas (a common unicellular green alga) and Microcystis were grown separately in WC liquid medium (Guillard and Lorenzen 1972) under ~50 µmol m$^{-2}$ s$^{-1}$ on 12:12 hour light/dark cycles. Chlamydomonas was aerated while Microcystis was not. Chlamydomonas and Microcystis were initially collected from Lake Erie. Equal amounts of Chlamydomonas and Microcystis were used in this experiment, based on content of chl a. Chlamydomonas and Microcystis were added so that they each had a initial chlorophyll chl a of 2.5 µg L$^{-1}$, making the total initial concentration 5.0 µg L$^{-1}$ (determined in DMSO). Phytoplankton intended for the experiment was grown in liquid culture with the nutrient concentration of the low treatment level for two weeks before used in the experiment to insure that internal phosphorus (P) storage was not accumulated.

A 2x2x2x2 factorial experiment was used to test the effects of nutrient concentration (low and high nutrients), turbidity (low and high), mixing (mixed or non-mixing) and sample depth (surface and at depth) on photosynthetic efficiency and pigments. Experimental tanks were constructed out of 61x76x90 cm (228 L)
polyethylene (PE) bins. Bins were divided into six 61x9x90 cm (36.5 L) chambers using black sheets of Acrylonitrile-Butadiene-Styrene (ABS) board (Fig. 3-1). PE foam was inserted along the edges of the ABS board to fill the space created by the expanding walls upon adding water. Outside walls of the PE bins were supported in a wooden frame to minimize expansion. Experiments were conducted in a greenhouse and exposed to natural sunlight (~1,500 µmol m⁻² s⁻¹) at ambient temperature (25 – 28 °C).

Tap water enriched with nutrient was used to replicate lake water. Because tap water P concentration was greater than what was intended for the low nutrient level, excess P was precipitated with 30 mg L⁻¹ Alum (Aluminum sulfate, Toledo Pools, Toledo, Ohio). Water intended for experimental use was held in 121 L bins. Water was aerated for at least 24 hours then alum was added and aeration was turned off to allow precipitation. The following day, flock was siphoned from the bottom of the bins. Treatment of tap water with alum decreased P to 0.01 mg L⁻¹. Alum treated water and non-treated water grew algae equally in culture.

Mixing of the chamber was achieved using powerhead pumps (Aquagardens #601) so that the intake hose was placed at the bottom of the chamber and outflow just beneath the surface (Fig. 1). Sieved Lake Erie sediments (400 µm) were added to create turbidity. High turbidity was achieved by adding 0.55 ml L⁻¹ sediments (~30 NTU) and 0.02 ml L⁻¹ for low turbidity (~1 NTU). High nutrient level included 3.0 mg L⁻¹ nitrogen (N) and 0.15 mg L⁻¹ P, and low level was 0.6 mg L⁻¹ N and 0.03 mg L⁻¹ P. The N:P was 45 in both levels and all other nutrient concentration were the same in each level. All other nutrients were half concentration of the WC media. Twiss et al. (2005) enriched
Lake Erie water with micro-nutrients to a final concentration similar of the WC growth media and observed no additional phytoplankton growth.

Once treatments were set up and phytoplankton added, 96 hours were allowed for growth. (An initial trial ran for 168 hours and twice as much initial alga resulted in similar light levels between the high and low turbidity treatments.) Following the 96 hours, samples were collected at the surface and 70 cm. The 70 cm sample represents the 20% of surface light in the low turbidity level and < 0.5 % in the highly turbid treatment. Phytoplankton (100ml) was filtered onto GF/F filters and Φ_{et} was measured. Samples were dark adapted for 30 minutes then used to determine F_v/F_m. Φ_{et} and F_v/F_m were determined using an OS1-FL Opti-Sciences modulated fluorometer in triplicate. Filters were stored on silica gel at -80 ° C for pigment concentration analyzes. Chambers 1 and 6 were not analyzed because of white outside wall resulted in higher light intensity than chambers 2 through 5 that had black walls. Light was recorded after all samples were collected. Photosynthetic measurements and light was recorded between 12:00 pm and 2:00 pm on sunny days.

Chlorophyll (chl) a was used as a surrogate for total algal biomass. Chls a and b and carotenoids were extracted in DMSO following methods in chapter 2 and concentration of pigments calculated using Wellburn 1994. Phycocyanin (PC) was extracted in sodium phosphate buffer using sonication and fluorescence following the methods of chapter 2.

Four-way ANOVA was performed to test for the effect of mixing (mixed or calm), turbidity (high or low), nutrients (high or low), and sample depth (surface and at depth) on Φ_{et}, F_v/F_m, and pigment composition. PROC ANOVA of SAS was used.
Complete Methods for Protein Extraction and Quantification

Collection and Separation

Microcystis was collected from five sites over the entire water column from five sites in western Lake Erie using a 64 μm mesh plankton net in western Lake Erie during July through September 2008 (Fig. 2-1). An additional site (MB20) was sampled for nutrients but *Microcystis* was not abundant enough to collect for physiological measurements. *Microcystis* colonies retained in the net were concentrated and stored in dark polyethylene bottles during transportation back to the laboratory. Depending on sample location, two to six hours passed between collection on the lake and laboratory analysis. Upon arriving to the laboratory, the *Microcystis* sample was added to a 1L imhoff cone and diluted to 1,000 ml with tap water. This allows the *Microcystis* colonies to separate from the sinking diatoms and green algae via floatation (Chaffin et al. 2008). After 30 minutes, the settled phytoplankton was drawn out through the bottom of the cone and discarded. The sample was then diluted again to 1,000 ml with tap water and process repeated. *Microcystis* colonies were drawn out of the bottom of the cone and concentrated on a 35 μm mesh, transferred to 1.5 ml tubes and stored at -80 °C until further analysis. Samples were also checked for the presence of other cyanobacteria by microscopy. *Anabaena* was very sparse relative to *Microcystis* colonies on July 24 and Aug. 6, and *Aphanizomenon* was not seen in samples.

Biochemistry

Proteins of *Microcystis* were extracted by grinding approximately 1 g of fresh weight tissue to a powder in liquid nitrogen using mortar and pestle then transfer to an extraction buffer containing 1% sodium dodecyl sulfate (SDS) detergent, 0.1 M Tris
buffer (pH = 8.0), 10% glycerol, 0.1% bromophenol-blue, 1% sucrose, protease inhibitors (1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM EDTA, 1 mM benzamidine, 10 mM leupeptin), a phenolic inhibitor (0.5% polyvinylpolypyrrolidone (PVPP)), and reductants (10 mM dithiothreitol (DTT), 0.1 M ascorbic acid) (Mishra et al. 2008). Sample was then centrifuged at 15,000 g for 10 minutes at 4 °C. Supernatant containing soluble proteins was collected and total protein content was determined using the method of Peterson (1977). Briefly, proteins from a 20µl sample were precipitated with 20µl chilled trichloroacetic acid and incubated for 60 minutes at 4°. Sample was then centrifuged at 12,000 g for 10 minutes at 4° then supernatant decanted. 150µl of BioRads reagent A’ was added to the protein pellet, vortexed and left for 5 minutes. Then 1,200µl of reagent B was mixed and incubated in the dark for 15 minutes at room temperature. Absorbance was measured at 750nm using the Shimadzu spectrophotometer and quantified using a standard curve of Bovine Serum Albumin and corrected for dry mass.

Samples in extraction buffer were kept at -80° C until further analyses.

To prepare protein for gel separation and quantification of rubisco and sHsp, proteins were precipitated in 10x volume acetone for 60 minutes at -20° C, centrifuged at 15,000 g at 4° C, then resuspended over night at 4° C in a sample buffer containing 1% SDS, 100 mM Tris buffer (pH = 6.8), 10% glycerol, 0.1% bromophenol-blue, and 0.4% β-mercaptoethanol. Protein samples were boiled for 4 minutes to denature protein then centrifuged at 21,000 g for 30 seconds to remove debris. Then proteins were separated in 12.5% SDS-PAGE using 30 µg of protein in each well. For rubisco, gel was stained using Coomassie blue R-250. After de-staining, the gel was scanned and relative content of rubisco large subunit band (52 kDa) was quantified by color density determined using
computer software (Hewlett Packer Scanjet 8200). For sHsp, proteins were transferred to nitro-cellulose membranes by electroblotting, and sHsp were detected using protein specific antibodies (Heckathorn et al. 2002) following the protocol in Dumbroff and Gepstein (1993) then relative content was quantified. Also, *Microcystis* grown in culture was heat-shocked at 40°C for 45 minutes to induce expression of sHsp and used a positive control. A heat-shocked tomato plant was also used as a positive control.

Literature Cited

Table 5-1. Complete results of CHN auto-analyzer and ICP-OES for macronutrients of *Microcystis*. X is no sample.

Units are mmol kg\(^{-1}\) dry weight.

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB18</td>
<td>8/6/08</td>
<td>40199.83</td>
<td>64484.13</td>
<td>4875.089</td>
<td>187.3762</td>
<td>204.0086</td>
<td>180.6329</td>
<td>96.8559</td>
<td>125.8127</td>
</tr>
<tr>
<td>8M</td>
<td>8/6/08</td>
<td>39400.50</td>
<td>65277.78</td>
<td>5074.946</td>
<td>190.5069</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7M</td>
<td>8/6/08</td>
<td>40116.57</td>
<td>65674.60</td>
<td>4967.880</td>
<td>198.0701</td>
<td>204.0086</td>
<td>180.6329</td>
<td>96.8559</td>
<td>125.8127</td>
</tr>
<tr>
<td>GR1</td>
<td>8/6/08</td>
<td>38676.10</td>
<td>64781.75</td>
<td>5010.707</td>
<td>239.0595</td>
<td>207.9484</td>
<td>165.2320</td>
<td>96.8559</td>
<td>132.6011</td>
</tr>
<tr>
<td>8P</td>
<td>8/6/08</td>
<td>38193.17</td>
<td>64980.16</td>
<td>5353.319</td>
<td>171.1334</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MB18</td>
<td>8/12/08</td>
<td>38984.18</td>
<td>64384.92</td>
<td>4503.926</td>
<td>187.6604</td>
<td>207.6130</td>
<td>209.4622</td>
<td>96.8559</td>
<td>127.7757</td>
</tr>
<tr>
<td>8M</td>
<td>8/12/08</td>
<td>38351.37</td>
<td>64087.30</td>
<td>5481.799</td>
<td>300.8221</td>
<td>223.8157</td>
<td>230.5105</td>
<td>115.5598</td>
<td>140.2096</td>
</tr>
<tr>
<td>7M</td>
<td>8/12/08</td>
<td>37993.34</td>
<td>64682.54</td>
<td>4760.885</td>
<td>298.8731</td>
<td>214.4505</td>
<td>192.5611</td>
<td>115.7123</td>
<td>125.6625</td>
</tr>
<tr>
<td>GR1</td>
<td>8/12/08</td>
<td>39883.43</td>
<td>66865.08</td>
<td>5017.844</td>
<td>189.4191</td>
<td>230.6634</td>
<td>120.6634</td>
<td>80.0826</td>
<td>132.3651</td>
</tr>
<tr>
<td>4P</td>
<td>8/12/08</td>
<td>40599.50</td>
<td>67658.73</td>
<td>5267.666</td>
<td>271.1472</td>
<td>233.8579</td>
<td>230.5105</td>
<td>115.5598</td>
<td>140.2096</td>
</tr>
<tr>
<td>MB18</td>
<td>9/1/08</td>
<td>41557.04</td>
<td>67658.73</td>
<td>5617.416</td>
<td>251.5390</td>
<td>219.4267</td>
<td>209.4622</td>
<td>96.8559</td>
<td>125.8127</td>
</tr>
<tr>
<td>8M</td>
<td>9/1/08</td>
<td>41024.15</td>
<td>68055.56</td>
<td>5165.412</td>
<td>219.4267</td>
<td>209.4622</td>
<td>209.4622</td>
<td>96.8559</td>
<td>125.8127</td>
</tr>
<tr>
<td>7M</td>
<td>9/1/08</td>
<td>41407.16</td>
<td>68154.76</td>
<td>5946.152</td>
<td>271.4712</td>
<td>223.8157</td>
<td>230.5105</td>
<td>115.5598</td>
<td>140.2096</td>
</tr>
</tbody>
</table>
Table 5-2. Complete results of ICP-OES for micronutrients of *Microcystis*. X is no sample, ND is not detected. Units are mmol kg\(^{-1}\) dry weight.

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>B</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Mo</th>
<th>Ni</th>
<th>Si</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB18</td>
<td>8/6/08</td>
<td>ND</td>
<td>0.182929</td>
<td>2.47391</td>
<td>ND</td>
<td>0.395610</td>
<td>0.012415</td>
<td>0.221543</td>
<td>8.41615</td>
<td>41.73772</td>
</tr>
<tr>
<td>8M</td>
<td>8/6/08</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7M</td>
<td>8/6/08</td>
<td>ND</td>
<td>0.125030</td>
<td>2.83011</td>
<td>0.208328</td>
<td>0.230040</td>
<td>ND</td>
<td>0.18609</td>
<td>3.71091</td>
<td>X</td>
</tr>
<tr>
<td>GR1</td>
<td>8/6/08</td>
<td>ND</td>
<td>0.202007</td>
<td>4.92874</td>
<td>0.237495</td>
<td>1.089595</td>
<td>ND</td>
<td>0.292144</td>
<td>5.84379</td>
<td>X</td>
</tr>
<tr>
<td>4P</td>
<td>8/6/08</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MB18</td>
<td>8/12/08</td>
<td>0.133766</td>
<td>0.220538</td>
<td>3.24832</td>
<td>ND</td>
<td>0.433680</td>
<td>0.022608</td>
<td>0.239666</td>
<td>6.98909</td>
<td>29.15047</td>
</tr>
<tr>
<td>8M</td>
<td>8/12/08</td>
<td>0.166700</td>
<td>0.194015</td>
<td>4.04506</td>
<td>0.243409</td>
<td>1.275844</td>
<td>ND</td>
<td>0.203547</td>
<td>5.88170</td>
<td>X</td>
</tr>
<tr>
<td>7M</td>
<td>8/12/08</td>
<td>ND</td>
<td>0.213488</td>
<td>3.03084</td>
<td>0.249253</td>
<td>0.609931</td>
<td>ND</td>
<td>0.212730</td>
<td>3.41703</td>
<td>X</td>
</tr>
<tr>
<td>GR1</td>
<td>8/12/08</td>
<td>ND</td>
<td>0.251381</td>
<td>3.74728</td>
<td>0.244321</td>
<td>0.765566</td>
<td>ND</td>
<td>0.408157</td>
<td>3.30462</td>
<td>X</td>
</tr>
<tr>
<td>4P</td>
<td>8/12/08</td>
<td>ND</td>
<td>0.164166</td>
<td>3.62222</td>
<td>0.208883</td>
<td>0.443173</td>
<td>ND</td>
<td>0.311783</td>
<td>4.03143</td>
<td>X</td>
</tr>
<tr>
<td>MB18</td>
<td>8/21/08</td>
<td>ND</td>
<td>0.184300</td>
<td>4.29485</td>
<td>ND</td>
<td>0.362618</td>
<td>0.008952</td>
<td>0.260672</td>
<td>3.96385</td>
<td>38.96957</td>
</tr>
<tr>
<td>8M</td>
<td>8/21/08</td>
<td>ND</td>
<td>0.220981</td>
<td>6.16410</td>
<td>0.250055</td>
<td>0.458386</td>
<td>ND</td>
<td>0.300731</td>
<td>4.64075</td>
<td>X</td>
</tr>
<tr>
<td>7M</td>
<td>8/21/08</td>
<td>ND</td>
<td>0.168644</td>
<td>4.12658</td>
<td>0.252041</td>
<td>0.467108</td>
<td>ND</td>
<td>0.304513</td>
<td>4.05507</td>
<td>X</td>
</tr>
<tr>
<td>GR1</td>
<td>8/21/08</td>
<td>ND</td>
<td>0.171286</td>
<td>3.15061</td>
<td>0.062023</td>
<td>1.003227</td>
<td>0.006906</td>
<td>0.326477</td>
<td>7.67274</td>
<td>51.38244</td>
</tr>
<tr>
<td>4P</td>
<td>8/21/08</td>
<td>ND</td>
<td>0.227733</td>
<td>3.72437</td>
<td>0.278918</td>
<td>0.729182</td>
<td>0.014789</td>
<td>0.487375</td>
<td>5.41819</td>
<td>X</td>
</tr>
<tr>
<td>MB18</td>
<td>9/1/08</td>
<td>ND</td>
<td>0.166154</td>
<td>3.40311</td>
<td>ND</td>
<td>0.273489</td>
<td>0.005896</td>
<td>0.261749</td>
<td>4.03424</td>
<td>30.19428</td>
</tr>
<tr>
<td>8M</td>
<td>9/1/08</td>
<td>ND</td>
<td>0.205270</td>
<td>5.19271</td>
<td>0.251204</td>
<td>0.385313</td>
<td>ND</td>
<td>0.305917</td>
<td>6.59578</td>
<td>X</td>
</tr>
<tr>
<td>7M</td>
<td>9/1/08</td>
<td>ND</td>
<td>0.184323</td>
<td>3.81245</td>
<td>0.211490</td>
<td>0.438517</td>
<td>ND</td>
<td>0.267902</td>
<td>3.73625</td>
<td>X</td>
</tr>
<tr>
<td>GR1</td>
<td>9/1/08</td>
<td>ND</td>
<td>0.182473</td>
<td>3.50946</td>
<td>0.157873</td>
<td>0.514071</td>
<td>ND</td>
<td>0.283427</td>
<td>4.75584</td>
<td>X</td>
</tr>
<tr>
<td>4P</td>
<td>9/1/08</td>
<td>ND</td>
<td>0.317674</td>
<td>4.35632</td>
<td>0.191492</td>
<td>0.532758</td>
<td>ND</td>
<td>0.396330</td>
<td>5.26706</td>
<td>X</td>
</tr>
</tbody>
</table>
Figure 5-1. Comparison of 0.05 M Tris buffer pH 7.0 to 0.1M Sodium phosphate buffer pH 6.8 after grinding a filter by mortar and pestle. High fluorescence values are due to cloudiness of sample. Values are average of six filters ± SE.
Figure 5-2. Comparison of phycocyanin (PC) fluorescence after sonication of various lengths in 0.05 M Tris buffer pH 7.0 and 0.1 M Sodium phosphate pH 6.8. Values are the average of three filters.
Figure 5-3. Absorbance spectra of *Microcystis* filtered and PC extracted by sonication for 15 minutes in 0.05 M Tris buffer pH 7.0 and 0.1 M Sodium phosphate pH 6.8.
Figure 5-4. Comparison of chl a extractions and quantification using DMSO with absorbance quantification and DMF with fluorescence quantification. Bold line is regression between the two methods and dashed line is a one to one line.
Figure 5-5. Chlorophyll a (μg L$^{-1}$) isopleths for sites 8M (top) and MB20 (bottom) for years 2007 (left panel) and 2008 (right panel). Values greater than the contour scale are written on the figure.
Figure 5-6. Phycocyanin (μg L$^{-1}$) isopleths for sites 8M (top) and MB20 (bottom) for years 2007 (left panel) and 2008 (right panel). Values greater than the contour scale are written on the figure.